透過您的圖書館登入
IP:3.16.70.101
  • 學位論文

主動諧振電路具有動態諧振週期控制技術之快速零電壓切換氮化鎵主動箝位返馳式轉換器

An Active Resonant Circuit with the Dynamic Resonant Period Control Technique for Fast Zero Voltage Switching in GaN-Based Active Clamp Flyback Converters

指導教授 : 陳科宏

摘要


此論文提出了利用氮化鎵場效應電晶體為切換開關的主動箝位反馳式轉換器。與矽基底場效應電晶體相比,當氮化鎵場效應電晶體主開關達成完全零電壓切換時,可以實現最大的開關損耗降低。因此,使用動態諧振週期控制技術來實現快速零電壓切換,可以減少 87%主動諧振電路上變壓器漏電感能量損失。當負載改變時,動態諧振週期控制技術動態調整主動諧振電路輔助開關的導通時間,以避免一次側元件上的承受過大的電壓。在滿載時,可以減少漏電感能量損失,從而將更多能量傳遞到二次側,效率可達 94%。當轉換器操作在輕載時切換至準諧振式,一次側開關根據不同的負載選擇不同的波谷做切換以降低換損失。另外,當負載繼續下降將進入頻率折返模式,開關的切換頻率將隨著負載線性的下降以降低功率損失。因此轉換器將隨著負載選擇合適的操作模式使其能維持高效率。

並列摘要


This thesis proposes an active clamp flyback (ACF) converter with GaN devices. Compared to Si FETs, when the main GaN FET is at full zero voltage switching (FZVS), maximum switching loss reduction can be achieved. Thus, the use of dynamic resonant period control (DRPC) technique to achieve fast ZVS can reduce 87% of the transformer leakage inductance energy loss on the active resonant circuit (ARC). When the load changes, the DRPC technique dynamically adjusts the auxiliary switch on-time to prevent large voltage stress on the primary side components. At full load, the leakage energy loss can be reduced, thereby transferring more energy to the secondary side with an efficiency of up to 94%. When the converter operates to switch to the quasi-resonant mode at light load, the primary side switch selects different valleys according to different loads to reduce the loss. In addition, when the load continues to drop, it will enter the frequency foldback mode, and the switching frequency of the switch will decrease linearly with the load to reduce power loss. Therefore, the converter will select the appropriate mode of operation with the load to maintain high efficiency.

參考文獻


[1] Khan, I.A., "Synthesis and Analysis of Transformer-Isolated Converters," IEEE Trans. Power Electron., vol. 10, no. 4, pp. 409-418, Jul. 1995.
[2] Torrico-Bascop R., Barbi N., "A double ZVS-PWM active clamping forward converter: analysis, design, and experimentation," IEEE Trans. Power Electron., vol.16, no.6, pp.745-751, Nov. 2001.
[3] Robert L. Steigerwald., "A Comparison of Half-Bridge Resonant Converter Topologies," IEEE Trans. Power Electron., vol. 3, no. 2, pp. 174-182, Apr. 1988.
[4] Yungtaek Jang, et al., "A New ZVS-PWM Full-Bridge Converter," IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1122-1129, Sep. 2003.
[5] K.-B. Park, et al., "PWM Resonant Single-Switch Isolated Converter," IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1876-1886, Aug. 2009.

延伸閱讀