透過您的圖書館登入
IP:18.225.98.111
  • 學位論文

異質接面矽晶太陽能電池於室內外光發電應用

Application of Heterojunction with Intrinsic Thin-layer Solar Cells in Outdoor and Indoor Light-electricity

指導教授 : 謝嘉民

摘要


異質接面矽晶太陽能電池(HIT)具有低溫製程(<200度C)、在高溫環境下如中午時有較佳的溫度係數(-0.25%/度C)使其有較穩定的表現以及結構簡單等優點,此外HIT太陽能電池的轉換波段在350nm-1100nm與可見光頻率分布相同,因此非常適合放在室外光(AM1.5G)下作為能量來源節點以及作為室內(600lux)物聯網各式元件的能量來源。 首先,本實驗針對HIT的氧化銦錫(ITO)透明導電薄膜層進行優化。由於氧化銦鎢材料(IWO)能增加長波長(900nm-1100nm)的轉換效率(光吸收增加約2%),因此我們與業界合作IWO透明導電薄膜層相關實驗並且將此種材料應用在HIT元件上。其中,我們使用極薄ITO(10nm) (φ~4.5eV)做為緩衝層解決IWO (φ~4.2eV)功函數較低的問題,製作成雙層透明導電薄膜結構,使效率從19.4%增加到20%。最後藉由減少網印線寬(130um->70um)並在250度C環境下放置60分鐘做退火處理,讓我們能夠穩定的製作出在室外光具有21.5%、室內光達到22uW/cm2的高效率太陽能電池。因此,HIT太陽能電池作為室外/室內能量採集,對於未來物聯網晶片自供電技術,具有相當高的潛力。

並列摘要


Heterostructure with intrinsic thin layer (HIT) solar cell is favorable for the energy-harvesting from outdoor- (1-Sun) and indoor-light (600lux) sources due to its low process temperature(<200C), high resistance to high temperature (-0.25%/C), and light absorption spectrum coincided with visible light spectrum in the range of 350-1100nm. This thesis will discuss the optimization of transparent conductive oxide (TCO), such as tin-doped indium oxide (ITO) and tungsten-doped indium oxide (IWO). First, IWO was employed to increase the light absorption in the long wavelength regime of 900-1000nm by increasing the light absorption of 2%. Moreover, the ultrathin ITO (φ~4.5eV) was used as a buffer layer to alleviate the bandgap discontinuity, so the double-layer TCO further increases HIT cell efficiency from 19.4% to 20%. Finally, the decrease in finger width of Ag electrode from 130 to 70 mm, followed by 250C annealing for 60 minutes enables further increase in cell efficiency up to 21.5% at 1-sun illumination and the output power about 22uW/cm2 at 600lux illumination. As a result, HIT solar cell used as energy harvesting in outdoor/indoor environment envisions high potential in the self-powered IoT chip in the future.

參考文獻


[1] M. Rasheduzzaman, P. B. Pillai, A. N. C. Mendoza, and M. M. De Souza, "A study of the performance of solar cells for indoor autonomous wireless sensors," Networks and Digital Signal Processing (CSNDSP), 2016.
[2] W. S. Wang, T. O'Donnell, N. Wang, M. Hayes, B. O'Flynn, and C. O'Mathuna, "Design considerations of sub-mW indoor light energy harvesting for wireless sensor systems," ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 6, no. 2, pp. 6, 2010.
[3] J. P. Carmo, L. M. Goncalves, and J. H. Correia, "Thermoelectric microconverter for energy harvesting systems," IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 861, 2010.
[4] T. D. Hieu and B.-S. Kim, "Stability-aware geographic routing in energy harvesting wireless sensor networks," Sensors, vol. 16, no. 5, pp. 696, 2016.
[5] D. Brunelli, L. Benini, C. Moser, and L. Thiele, "An efficient solar energy harvester for wireless sensor nodes," Automation and Test in Europe, pp. 104: IEEE , 2008.

延伸閱讀