透過您的圖書館登入
IP:18.188.20.56
  • 學位論文

常壓電漿應用於快速微流體晶片製作

Atmospheric Pressure Plasma for Rapid Fabrication of Microfluidic Chip

指導教授 : 蔡佳宏
本文將於2024/08/24開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


傳統微流晶片的製作需要繁瑣的步驟以及昂貴的儀器,往往從設計到作出一個微流晶片需要耗費數日甚至數週的時間。本研究目的為利用電漿能改變材料表面親水性的特性,開發一個電漿束描繪裝置,以快速製作低成本的微流晶片。本研究分為三個部分:(1) 電漿束表面改質時間最佳化、(2) 表面連續微流道製作,以及 (3) 表面非連續液滴操控。第一部分研究中,為了達到快速親水表面改質,使用田口法最佳化電漿參數,大幅降低電漿處理時間,使達到親水接觸角小於10度的時間從90秒減少到僅需7.5秒。第二部分進一步製作微米尺度連續流道,透過電漿劑量調控以及電漿束縮口的方法,成功地控制流道寬度,最小流道寬度達160微米。第三部分將此電漿束系統應用在非連續液滴產生與操控,利用電漿親水表面處理以及氣流吹離液滴方式,成功地操縱液滴於表面移動,液滴大小可依電漿劑量控制,範圍在0.05微升到0.7微升之間。本研究亦討論了提高環境相對溼度和增加自由基密度的方式來延長親水表面時效,延長親水表面時效為本研究開發之微流道實際應用上重要因素,是未來研究重點。最後,本研究成功地開發了一個以電漿束繪製微流道的系統,此系統相較於一般傳統系統只需不到十分之一的設備成本外,亦不需製作過程中的各式昂貴耗材,實驗證實僅需數秒的時間即能製作出微米尺度的流道,預期能應用在微流晶片系統的快速原型設計,增加微流相關研究開發效率。

並列摘要


The fabrication of traditional microfluidic chip requires complex steps and expensive instruments, it usually takes several days, or even weeks, to make a microfluidic chip. This thesis aims is to develop a rapid fabrication method for making microfluidic channels on a chip using a plasma jet, which is well known for its capability of hydrophilicity modification. The study includes three parts: (1) the optimization of the surface modification with a plasma jet on treatment time, (2) the plasma-aid fabrication for surface microfluidic channels, and (3) the plasma-aid method for droplet generation and manipulation. In the first part, the Taguchi method was used to optimize the plasma parameters, so that plasma treatment time can be drastically reduced from 90 seconds to only 7.5 seconds. In the second part, the micro-scale flow path is plotted on a substrate surface using a plasma jet. The minimum width of the flow has achieved as small as 160 micrometers. In the third part, the plasma system is applied to the generation and manipulation of droplets. The droplets size can be controlled in the range between 0.05 microliters and 0.7 microliters by different plasma doses. The aging effect of the plasma-induced hydrophilicity has been investigated with different ambient humidity and different sizes of the plasma nozzle. Finally, a system for patterning microchannel with a plasma jet has been successfully developed. It is confirmed by experiments that micron-scale channels can be produced in few seconds. This work is expected to be applied to the rapid prototyping of microfluidic systems for research and development.

參考文獻


[1] R.Gómez-Sjöberg, A. A.Leyrat, D. M.Pirone, C. S.Chen, andS. R.Quake, “Versatile, fully automated, microfluidic cell culture system,” Anal. Chem., vol. 79, no. 22, pp. 8557–8563, 2007.
[2] P. J.Hung, P. J.Lee, P.Sabounchi, R.Lin, andL. P.Lee, “Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays,” Biotechnol. Bioeng., vol. 89, no. 1, pp. 1–8, 2005.
[3] J.Lawrence, B.O’Sullivan, G. J.Lye, R.Wohlgemuth, andN.Szita, “Microfluidic multi-input reactor for biocatalytic synthesis using transketolase,” J. Mol. Catal. B Enzym., vol. 95, pp. 111–117, 2013.
[4] E.Sollier, C.Murray, P.Maoddi, andD.DiCarlo, “Rapid prototyping polymers for microfluidic devices and high pressure injections,” Lab Chip, vol. 11, no. 22, pp. 3752–3765, 2011.
[5] K.Ren, J.Zhou, andH.Wu, “Materials for microfluidic chip fabrication,” Acc. Chem. Res., vol. 46, no. 11, pp. 2396–2406, 2013.

延伸閱讀