透過您的圖書館登入
IP:3.137.198.96
  • 學位論文

3–6 GHz超寬頻低功率自順向基底偏壓低雜訊放大器設計

3–6 GHz Ultra-Wideband Low-Power Self-Forward-Body-Bias Low-Noise Amplifier

指導教授 : 唐震寰

摘要


於本論文,我們提出一使用0.18-µm TSMC CMOS 1P6M製程應用於超寬頻低頻帶系統之低功率自順向基底偏壓低雜訊放大器。使用自順向基底偏壓技術,可以降低低雜訊放大器的供應電壓並且也可以節省額外的偏壓電路,而使我們的低雜訊放大器在兩個汲極-源極的電壓降之供應電壓為1.06 V為低功率消耗。而LNA電路裡的互補式架構與第二級直接耦合的方式也節省了額外所需的偏壓電路。由於提出的自順向基底偏壓技術對於雜訊指數有些許不好的影響,因此,我們針對此問題將先前提出的低雜訊放大器之雜訊指數做改善。在本論文的一些圖表中,所提出第一個的低雜訊放大器之量測數據顯示,在功率消耗6.38 mW且頻寬為2.6至6.6 GHz,最大增益為15.5 dB,輸入/輸出阻抗匹配之功率反射係數分別為低於-12 dB 及 -17dB,平均雜訊指數為3.2 dB。而改善後的低雜訊放大器之量測結果顯示,在功率消耗4.5 mW且頻寬為2.0至6.6 GHz下,最大增益為16.2 dB,輸入/輸出阻抗匹配之功率反射係數分別為低於-12 dB 及 -16dB,平均雜訊指數為2.6 dB。

並列摘要


A low-power low-noise amplifier (LNA) implemented in 0.18-μm TSMC CMOS 1P6M technology utilizing a self-forward-body-biased (SFBB) technique is proposed for UWB low-frequency band system in this thesis. By using the SFBB techniques, it reduces supply voltage as well as saves additional biased circuits used in conventional FBB techniques, which leads to a low power consumption with low supply voltage of 1.06 V for two MOSFETs drain-to-source voltage drops. Using the complementary configuration and inter-stage direct coupling technique also saves the biased circuits. However, the self forward body bias technique will give rise to some noise figure degradation. Therefore, we proposed the second LNA to improve the noise figure of the preceding LNA in this thesis. The measurement result shows that the LNA 1 also presents a maximum power gain of 15.5 dB with a good input/output match (S11< –12 dB/ S22< -17 dB) and an average noise figure of 3.2 dB in the frequency range of 2.6–6.6 GHz while consuming power of 6.38 mW. And the measurement result shows that the NF-improved LNA presents a maximum power gain of 16.2ddB with a good input/output match (S11< -12 dB/ S22< -16 dB) and an average noise figure of 2.6 dB in the frequency range of 2.0–6.6 GHz while consuming power of 4.5 mW.

參考文獻


[1] “Multi-band OFDM Physical Layer Proposal,” IEEE P802.15 Working Group for Wireless Personal Area Networks (WAPNs), http://grouper.ieee.org/groups/802/15/pub/ 2003/Jul03/03267r5P802_15_TG3a-Multi-band-OFDM-CFP-Presentation.ptt.
[3] Y.-J. Lin, S.-H. Hsu, J.-D. Jin, and C.-Y. Chan, “A 3.1–10.6-GHz ultra-wideband CMOS LNA with current-reused technique,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 232–234, Mar. 2007.
[4] A. Bevilacqua and A. M. Niknejad, “An ultra-wideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004.
[5] C.-W. Kim, M.-S. Kang, P.-T. Anh, H.-T. Kim, and S.-G. Lee, “An ultra-wideband CMOS LNA for 3–5-GHz UWB system,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 544–547, Feb. 2005.
[6] T. K. K. Tsang, K.-Y. Lin, and M. N. El-Gamal, “Design techniques of CMOS UWB amplifier for multistandard communications,” IEEE Trans. Circuit Syst. II, Exp. Briefs, vol. 55, no. 3, pp. 214–218, Mar. 2008.

延伸閱讀