透過您的圖書館登入
IP:3.133.86.172
  • 學位論文

奈米級蕭特基金氧半場效電晶體之載子傳輸特性與通道背向散射研究

The Carrier Transport and Channel Backscattering Characteristics of Nanoscale Schottky-Barrier MOSFETs

指導教授 : 莊紹勳

摘要


在前瞻超大型積體電路元件中,為了提升元件的效能,許多新穎的元件結構已被廣泛的提出,例如:高介電係數介電層、應變矽通道、金屬閘極與金屬源/汲極結構。當元件微縮至奈米級尺寸時,通道背向散射理論已經成功的運用在預測元件微縮極限上。而今,由於蕭特基金氧半場效電晶體製作的最佳化方法已趨可行,其在前瞻元件演進的地位已大幅的提升。因此,蕭特基金氧半場效電晶體的載子傳輸特性的研究成為主要課題。 本論文中,我們首先著眼於利用活化能(Activation Energy Method)方法求得等效的蕭特基位障勢。蕭特基場效電晶體之汲極電流傳導機制與閘極電壓的關係式可利用等效蕭特基位障勢表示。另外,我們同時發現蕭特基金氧半場效電晶體在打開狀態時,產生一個負等效蕭特基位障勢,使通道背向散射原理可運用於此。以往,溫度相依法(Temperature Dependent Method)常被用來探討通道背向散射係數。但是,在蕭特基金氧半場效電晶體中,載子主要是透過熱場發射機制由源極入射制通道內。所以對此元件來說,溫度相依法是不可行的。為了要求得載子彈道入射的機率,我們導入了等效彈道遷移率(Effective Ballistic Mobility)的觀念,此原理是建立在載子遷移率(Mobility)會隨著通道縮小而下降的因素上。因此,我們可以透過等效彈道遷移率的方法得到載子在元件線性區的彈道入射係數與載子熱入射(Thermal Injection Velocity)速度。然後,我們運用當電晶體在負等效蕭特基位障勢發生時的載子平均傳輸速度(Carrier Average Velocity)與載子熱入射速度上,藉由這兩個速度的關係式,載子在打開狀態時的載子彈道入射機率即可求得。 由本文的研究,我們得到幾個結論: (1) 背向散射理論在蕭特基金氧半場效電機體中,因負等效位障勢的產生而再度的適用, (2) 載子由源極經通道到達汲極的背向散射機率因非局部的熱場穿遂機制而較傳統金氧半場效電晶體高, (3) 應變矽通道元件對背向散射係數影響較輕,但對載子熱入射速度影響較劇烈, (4) 遷移擴散(Drift-Diffusion)模型在quasi-ballistic區仍適用。因此,蕭特基金氧半場效電晶體加上高參雜隔離層(Dopant Segregation Implantation)與CESL(Contact-Etched Stoped Layer)技術,可達道元件高速操作的需求。

並列摘要


In advanced VLSI devices, a lot of new structures have been brought up for enhancing drain current such as strained-Si channel, high-κ dielectric, metal gate and metal source/drain. In the nanoscale channel length, the channel backscattering theory has been applied to predict the scaling-limitations of these structures successfully. Nowadays, the Schottky-barrier MOSFETs have aroused much more attention because some optimized processes become feasible. Hence, the carrier transport mechanism of Schottky-barrier MOSFETs from source to drain becomes the most popular topic in researches. In the thesis, first, we will focus on finding the effective Schottky-barrier height from the activation energy method. We can describe the effective Schottky-barrier height versus carrier transport mechanism relationship from this method. A negative effective Schottky-barrier height is found in the ON-state of the Schottky-barrier MOSFETs so that the channel backscattering theory can be used for extracting the carrier ballistic rate. In the past, the ballistic coefficient is extracted by temperature dependent method. However, the major carrier transport mechanism in the Schottky-barrier MOSFET is field emission, the temperature dependent method is failed. We practiced the effective ballistic mobility which is from mobility degradation in short channel devices. We may directly obtain the ballistic coefficient and thermal injection velocity in the linear region. Then, we derive the carrier average velocity versus thermal injection velocity relations in ON-state. By the two velocity components, the ballistic probability of the Schottky-barrier MOSFET can be extracted easily. Based on the results of this work, it was concluded that: (1) the backscattering theory is practicable from the negatively effective Schottky-barrier height, (2) the backscattering probability in the source side of Schottky-barrier is smaller than that in the conventional MOSFETs due to non-local tunneling, (3) the strained technology affects the backscattering coefficient lightly but it affects the thermal injection velocity drastically, (4) the drift-diffusion model is still workable in quasi-ballistic region. Thus, Schottky-barrier MOSFET with dopant segregation implantation and CESL(Contact-Etched Stoped Layer) can enhance the ballistic rate and thermal injection velocity that produced high speed operation in Schottky-barrier MOSFETs.

參考文獻


[1] M. S. Lundstrom, “Elementary scattering theory of the Si MOSFET,” IEEE Elec. Dev. Lett., vol. 18, no. 7, pp. 361-363, July 1997.
[2] M. S. Lundstrom and Z. Ren, “Essential physics of carrier transport in nanoscale MOSFETs,” IEEE Trans. on Electron Devices, vol. 49, no. 1, pp. 133-141, Jan. 2002.
[3] M. S. Lundstrom, “On the Mobility Versus Drain Current Relation for a
[5] J. Guo and M. S. Lundstrom, “A Computational Study of Thin-Body, Double-Gate, Schottky Barrier MOSFETs,” IEEE Trans. on Electron Devices, vol. 49, no. 11, pp. 1897-1902, Nov. 2002
[6] J. Wang, and M. S. Lundstrom, “Ballistic Transport in High Electron Mobility Transistors,” IEEE Trans. on Electron Devices, vol. 50, no. 7, pp. 1604- 1609, July 2003.

被引用紀錄


沈佩蓉(2014)。新移民子女數學學習態度之研究 -以桃園縣一所國中七年級學生為例〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201400415
鄭鈞丰(2011)。國中導師正向管教、班級氣氛與 班級經營效能關係之研究:以新竹區為例〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/CYCU.2011.00207
李靜宜(2010)。國小學童知覺教師領導模式與 師生衝突因應策略關係之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/CYCU.2010.00585
黃若雯(2010)。國民中學學生知覺導師領導風格與班級經營成效關係之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/CYCU.2010.00584
劉玉薇(2008)。國中導師轉型領導與學生價值觀 關係之研究-以桃園縣為例〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/CYCU.2008.00085

延伸閱讀