透過您的圖書館登入
IP:3.133.108.241
  • 學位論文

有機薄膜電晶體材料─噻吩與噻吩并噻吩熔合之六環分子及噻吩乙烯基噻吩單體所形成之共軛高分子之合成與鑑定

Synthesis and Characterization of Conjugated Polymers Based on Thiophene and Thienothiophene Fused Hexacyclic Unit and [2-(Thiophen-2-yl)vinyl]thiophene Unit for Organic Thin Film Transistor Applications

指導教授 : 許千樹

摘要


本研究分別設計出兩系列以噻吩為主體的共軛高分子並應用於有機薄膜電晶體(OTFT)。在第一部分中,以噻吩并噻吩(thieno[3,2-b]thiophene,TT)為中心,並且用一個碳原子將之與兩旁的噻吩以共價鍵連結在同一平面上,形成帶有助溶基團的六環平面梯狀分子,將此單體與不同環數與剛硬程度的thiophene(T)、thienothiophene(TT)、bithiophene(2T)共聚,成功合成出交錯型共軛高分子PTTDT-T、PTTDT-TT及PTTDT-2T並應用於OTFT,得到載子遷移率分別為1.52×10-3、1.62×10-3及2.83 × 10-3 cm2 V-1 s-1。 而在第二部份研究中,我們設計出三個以噻吩乙烯基噻吩(TVT)為主體的單體,並與一缺電子基團4,7-dithiophenyl-5,6-difluoro -1,2,3-benzothiadiazole(DTFBT)做共聚, 得到另一系列碳鏈位置與型態不同的交錯型共軛高分子PT4VFBT-2od1、 PT4VFBT-4d 和PT4VFBT-2od2,此系列高分子有較佳的結晶性與較小的堆疊距離,因此在有機薄膜電晶體有較好的表現,PT4VFBT-2od1、 PT4VFBT-4d 和PT4VFBT-2od2的載子遷移率分別為2.4 × 10-1、4.3 × 10-1及3.7 × 10-2 cm2s-1V-1。

並列摘要


In this study, two series of conjugated polymers were synthesized for the application of organic thin film transistor(OTFT). For the first series, a hexacylic ladder monomer(TTDT) consisting of two thiophenes and a thieno[3,2-b]thiophene ring was synthesized. The TTDT monomer was copolymerized with thiophene(T), thieno[3,2-b]thiophene(TT), bithiophene(2T)to form the alternating copolymers PTTDT-T, PTTDT-TT and PTTDT-2T. The OTFT devices based on PTTDT-T, PTTDT-TT and PTTDT-2T show the mobilities of 1.52×10-3, 1.62×10-3, 2.83×10-3 cm2s-1V-1 respectively. For the second series, we design a monomer with [2-(Thiophen-2-yl)vinyl] thiophene(TVT) unit. The monomer was copolymerized with 5,6-difluro-4,7-dithiophenyl-2,1,3-benzothiadiazole(DTFBT) unit to form three copolymers PT4VFBT-2od1, PT4VFBT-4d and PT4VFBT-2od2 with different alkyl side chains. The OTFT devices based on PT4VFBT-2od1, PT4VFBT-4d and PT4VFBT-2od2 show the mobilities of 2.4 × 10-1, 4.3 × 10-1, 3.7 × 10-2 cm2s-1V-1 respectively.

並列關鍵字

OTFT OFET semiconductors low band gap

參考文獻


1. Shockley, W. Bell Syst. Tech. J., 1949, 28, 435.
3. Kilby, J. S. IEEE Trans, Electron Devices ED-23, 1976, U.S. Patent 3, 138, 743.
9. Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.
14. Troisi, A.; Orlandi, G. J. Phys. Chem. A. 2006, 110, 4065.
15. Le Comber, P. G.; Spear, W. E. Phys. Rev. Lett. 1970, 25, 509.

延伸閱讀