透過您的圖書館登入
IP:3.129.210.17
  • 學位論文

在鹼性溶液中使用電漿增強接觸輝光放電製備多層石墨烯

Plasma Enhanced Contact Glow Discharge to Produce Graphene in Alkaline Solution

指導教授 : 韋光華

摘要


本研究主要探討電漿接觸輝光放電在鹼性溶液下製備多層石墨烯的機制,選擇了不同的鹼金屬族氫氧化物(LiOH, NaOH,KOH)作為電解質,觀察其放電特性後,發現其符合接觸輝光放電的特性,並且更加深入探討其機制,使用光學電子能譜儀(Optical electron spectrum)等儀器判斷其機制為高溫下陰極產生輝光放電現象,其高溫使電極表面產生氣體層,電解液中的陽離子被陰極吸引來擠壓氣體層使陰極之石墨脫落形成多層石墨烯,在本研究中也針對使用不同鹼金屬族氫氧化物(LiOH, NaOH,KOH)電解液所產生的多層石墨烯做分析,發現以氫氧化鋰為電解液所得到的多層石墨烯是非常不一樣的,此現象也可以使用我們所發現的機制來解釋,我們也在本研究中將比表面積從原來的45.8 m2 /g提升到176.8m2 /g,並且在釐清機制後能更有效率的改變接下來的製備石墨烯參數。

並列摘要


In this study, we discuss the mechanism of plasma enhance contact glow discharge to produce few layer graphene in alkaline solution. The electrolytes are chosen from IA hydroxides (LiOH, NaOH, KOH) as the electrolytes. When the plasma working, we find the I-V curve is the same as contact glow discharge. After that, the deeply discussion of the process is ongoing. The OES(Optical electron spectrum) is used to identify the mechanism. The temperature which much higher than the boiling temperature of water lead to the vapor layer, and the cations (Li+, Na+, k+) of the electrolytes are attracted by the cathode. And the cations press the vapor layer to exfoliate the graphite into few layer graphene. In this study, we also found that the few layer graphene from the LiOH solution is a lot of different from the others (NaOH, KOH). This result can also be explained by the mechanism of this process. This study not only clarify the mechanism of the process for getting thinner and larger graphene but improve the surface area from 45.8 m2 /g to 176.8m2 /g.

參考文獻


(3) Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L.: Solid State Communications 2008, 146, 351.
(17) Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J.: The Journal of Physical Chemistry C 2008, 112, 8192.
(21) Noel, M.; Santhanam, R.: Journal of Power Sources 1998, 72, 53.
(25) Su, C.-Y.; Lu, A.-Y.; Xu, Y.; Chen, F.-R.; Khlobystov, A. N.; Li, L.-J.: ACS Nano 2011, 5, 2332.
(28) Lu, X.; Zhao, C.: Physical Chemistry Chemical Physics 2013, 15, 20005.

延伸閱讀