透過您的圖書館登入
IP:3.145.191.169
  • 學位論文

可應用於高溫操作之鍺量子點單電洞電晶體之製程開發與評估

Process Development and Evaluation of Germanium Quantum Dot Single Hole Transistor for High-temperature Operation

指導教授 : 李佩雯
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著 CMOS 關鍵製程技術不斷微縮,現今已快接近物理的極限,因此許多奈米元件越來越受到重視,其中單電子/電洞電晶體結合了小尺寸、高操作速度與低消耗功率等優點,所以單電子/電洞電晶體為大家所矚目的元件之一。本論文致力於關鍵製程模組開發與評估,將其應用於可在高溫下操作之單電洞電晶體。欲製作出在高溫下操作之單電洞電晶體,最關鍵之處在於鍺量子點尺寸及位置上地控制以及如何精準地控制三端介電層的薄膜厚度。 因在關鍵製程模組開發上遇到一些瓶頸,導致元件最後無法順利完成。故藉學長所製作出”利用氮化矽作為穿隧接面之鍺量子點單電洞電晶體”來學習電性量測與分析,以及更進一步地利用此元件做脈衝量測分析,來觀察電洞進出鍺量子點的傳輸行為模式及元件的操作速度,期望未來可應用於高頻元件發展上面。

並列摘要


As the dramatic scaling of key modules of CMOS technology, the feature sizes of Si CMOS devices are close to their physical limitation. Therefore, nano-devices attract more attentions in nowadays. Single electron/ hole transistors (SETs/SHTs) combine the potentials of small dimension, high operating speed and low power consumption. Thereby, SETs/SHTs become one of the devices that people look forward to. This thesis dedicates and focuses on the process development and evaluation of Ge QD SHT for high-temperature operation. The key modules of SHT for high-temperature operation are the precise control of Ge QD size, position and the dielectric thickness between gate, source, and drain electrode. Due to the bottleneck of process development, the SHTs could not be realized. Thereby, this thesis used the devices of a senior’s project—“Fabrication and Electrical characterization of Germanium QD Single Hole Transistor with Si3N4 tunnel junction” to learn the measurement and characteristics of SHTs. Moreover, this thesis also characterized the operation speed and transportation mechanism of holes into a Ge QD using a pulse measurement for high-frequency applications in future work.

參考文獻


[1] K. K. Likharev, “Correlated discrete transfer of single electrons in ultrasmall tunnel junctions,” IBM Journal of Research and Development, 32, 144, (1988).
[2] T. A. Fulton and G.J. Dolan, “Observation of single-electron charging effects in small tunnel junctions,” Physical Review Letters, 59, 109, (1987).
[3] Susan J. Angus, Andrew J. Ferguson, Andrew S. Dzurak and Robert G. Clark, “Gate-defined quantum dots in intrinsic silicon,” Nano Letters, 7, 2051, (2007).
[4] S. J. Shin, C. S. Jung, B. J. Park, T. K. Yoon, J. J. Lee, S. J. Kim, J. B. Choi, Y. Takahashi and D. G. Hasko, “Si-based ultrasmall multiswitching single-electron transistor operating at room-temperature,” Applied Physics Letters, 97, 103101, (2010).
[5] W. T. Lai, David M. T. Kuo and P. W. Li, “Transient current through a single germanium quantum dot,” Physical E, 41, 886, (2009).

延伸閱讀