透過您的圖書館登入
IP:18.219.236.62
  • 學位論文

有機薄膜材料電致發光及光子晶體共振腔研究

Study of Electroluminescent Spectra and Photonic Crystal Cavities in Organic films

指導教授 : 陳啟昌 張瑞芬
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文研究有機材料電致發光光譜與光子共振腔元件。首先利用光放大量測出有機增益材料之增益中心波長,並藉由增益波長與平面波展開法(Plane Wave Expansion, PWE)演算出二維漸進式週期光子晶體共振腔之模擬基本參數參考,再藉由有限時域差分法(Finite-Difference-Time-Domain, FDTD)計算出結構參數及分析漸進式週期光子晶體共振腔之特性。並將有機增益材料F8製作成有機發光二極體(OLED),其目的為待共振腔結構成功製作在有機薄膜上技術成熟後,進行電致共振腔元件之製作,所以對有機發光二極體量測其電性、發光頻譜、和外部量子效率(external quantum efficiency,EQE)作為紀錄,並待成功製作出電致共振腔元件後做為比較。為了在有機材料建置光子晶體共振腔,採用奈米壓印之技術,其主要因素為有機材料無法採用黃光微影蝕刻製程,過程中易使有機材料之性質衰退,所以為成功在有機薄膜建置光子晶體共振腔,研究如何採用奈米壓印的方式建置。上述研究將成為未來研究電致發光光子晶體共振腔元件之基礎。

並列摘要


In this thesis, we study the electroluminescent spectra of organic materials and the photonic crystal cavity devices. We measure the emission wavelength of the organic gain materials by amplified spontaneous emission. The resonance of the two dimensional graded photonic crystal cavity in the organic material is calculated by the plane wave expansion method. We use the finite–difference-time-domain method to calculate the parameters of the structure and to analyze the properties of the graded photonic crystal cavity. The organic light emitting diode was manufactured by the organic material F8. We measured the electrical property, the spectrum of electroluminescence and the EQE of the materials. The photonic crystal cavity was manufactured on the organic thin film by using nanoimprint techniques. Study of nanoimprint manufacture for the photonic crystal cavity on organic thin film is achieved. The further study is the manufacture of the electroluminescence device with graded photonic crystal cavity.

參考文獻


[1] S. John, ”Strong localization of photons in certain disordered dielectric superlattice,” Phys. Rev. Lett. 58, 2486(1987)
[2] E. Yablonovitch, ”Inhibited Spontaneous Emission in Solid-State Physics and Electronics,”Phys. Rev. Lett. 58, 2059(1987)
[5] T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin ,T. J. Shepherd, ”Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941(1995)
[7] A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimension photonic crystal,”Appl. Phys. Lett. 75, 24(1999)
[8] M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien,and P. D. Dapkus, “Two-dimensional photonic crystal Mach-Zehnder Interferometers,”Appl. Phys. Lett. 84, 4(2004)

延伸閱讀