透過您的圖書館登入
IP:3.149.214.32
  • 學位論文

組織工程用冷凍成型製造系統 之自動化製作流程開發

Development of Automatic Process to Frozen-Form Fabrication System for Tissue Engineering

指導教授 : 廖昭仰
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


組織工程的目的在於使用人造生物支架的方法解決人體組織移植和修復等問題。近年來隨著積層製造技術的普及,有越來越多人使用積層製造技術製作生物支架。本研究的目的即在於發展出一套生物支架用積層製造系統,並利用本研究所發展的系統製作出高品質的生物支架。 本研究基於冷凍成型製造技術發展出一套自動化支架製作系統。有別於傳統積層製造機台使用三軸運動模組,本系統使用機械手臂、Z軸升降平台做為運動模組,並加上低溫溫度控制模組以及點膠模組。本研究利用C#程式語言發展出一套可整合上述模組的主控程式。此程式包含一個簡潔的使用者介面,讓使用者可監控系統內各個硬體設備。本研究亦發展了一套自動化的支架製作流程,此自動化流程包含特殊設計的控制參數及改良過的路徑演算法,可以修正機械手臂的特性。使用者僅需輸入參數即可製作出高品質的支架。 最後本研究以實驗來驗證上述控制參數和路徑演算法為實際可行,而且可以修正機械手臂的特性,進而提升支架的品質。

並列摘要


The purpose of tissue engineering is to repair or to replace human tissue by artificial scaffolds. In recent years, additive manufacturing technique has become popular. More and more researchers attempt to fabricate scaffolds by using such techniques. This study aimed to develop a novel additive manufacturing system for fabricating high quality bio-scaffolds. In this study, an automatic bio-scaffolds manufacturing system based on frozen form fabrication technique was developed. Unlike conventional additive manufacturing system, the proposed system used a SCARA and a Z axis stage instead of 3 axis stage as its motion module. The system also contains a low-temperature control module and a dispensing module. A control program integrated the above modules based on C# programing language and an automatic process for bio-scaffolds fabrication were also developed. The control program consisted of a user interface, which enabled users to monitor equipment of the system. The automatic process consisted of carefully designed parameters and modified tool path algorithms, which can modify the motion of the SCARA. Users can fabricate bio-scaffolds by input parameters into the interface. Finally, this study has conducted several experiments to verify the feasibility of above parameters and algorithms. Proving they can modify motions of the robotic arm, and can enhance the quality of bio-scaffolds.

參考文獻


[2] K. Rezwana, Q.Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering” Biomaterials, Vol. 27, pp. 3413-3431, 2002.
[3] R. P. Lanza, R. Langer, and J. Vacanti, Principles of Tissue Engineering, 2nd Edition, Academic Press, pp. 251-261, 2000.
[4] D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, and K. C. Tan, “Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling” Journal of Biomedical Materials Research, Vol. 55, pp. 203-216, 2001.
X. M. Mob, H. T. Loh, E. Burdet, and S. H. Teoh, “Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system” Materials Science and Engineering C, Vol. 20, pp. 35-42, 2002.
[7] I. Zein, D. W. Hutmacher, K. C. Tan, and S. H. Teoh, “Fused deposition modeling of novel scaffold architectures for tissue engineering applications” Biomaterials, Vol. 23, pp. 1169-1185, 2002.

延伸閱讀