透過您的圖書館登入
IP:3.137.178.133
  • 學位論文

類弦波反電動式無刷直流馬達之SVPWM研究

Non-sinusoidal back electromotive force brushless DC motor of SVPWM research

指導教授 : 徐國鎧
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究討論馬達只有霍爾傳感器情況下,使用基礎的空間向量脈波寬度調變,相較於六步控制可以提升馬達在各轉速與負載下的效率、並使馬達對於外部負載變化可以有更好的響應、提高馬達最大力矩輸出;另外地提出空間向量脈波寬度調變電壓向量的,排列方式調整以減少反流器切換損耗,並配合三相電流流動方向調整電壓向量的排列方式,藉由電壓向量排列方式與三相電流方向,調控MOS開關切換方式提高馬達運轉時效率。 市售的無刷馬達的反電動勢從標準梯形波到弦波都可以出現,甚至帶有諧波成分的類弦波,本研究針對個別馬達反電動勢進行波形分析,將具有諧波成分經過演算法加入空間向量脈波寬度調變,讓調整過的空間向量脈波寬度調變驅動對應馬達時可以有較理想的相電流,並使用噪音計量測六步方波控制、SVPWM、調整後SVPWM,三種控制方法在運轉時噪音大小,驗證馬達運轉時高頻噪音的差異。

並列摘要


The study consider the motor only with the Hall sensor motor, and still can use under different the space vector pulse width modulation to improve motor efficiency speed and load infinite compared with six-steps control. The designed SVPWM could increase the maximum torque output. Also, properly arranging the SVPWM voltage vector pattern can reduce switching loss. In accordance with the motor three-phase current, this study adjusts the SVPWM voltage vector pattern. To reducing switching losses and enhance the motor efficiency. The back-EMF of brushless DC motor include trapezoidal wave, sine wave, and even sine wave with harmonic components. The study analysis motor back-EMF first, and then add the harmonic components into the space vector pulse width modulation. Thus the adjusted space vector pulse width modulation drive can have more ideal motor phase current. Moreover, a sound meter is used to measure noises induced by six-step control, SVPWM, adjusted SVPWM.

並列關鍵字

SVPWM back-EMF harmonic component switching loss BLDC

參考文獻


[ 1 ] Jaldanki Sreenivasa Siva Prasad, Gopalaratnam Narayanan, “Minimum switching loss pulse width modulation for reduced power conversion loss in reactive power compensators”, IET Electron. Power Appl., Vol. 7, No. 3, pp.545-551, March 2014.
[ 2 ] Zhao, D., Hari, V.S.S.P.K., Narayanan, G., Ayyanar, R, “Space-vector-based hybrid pulsewidth modulation techniques for reduced harmonic distortion and switching loss”, IEEE Trans. Power Electron., Vol. 25, No. 3, pp. 760–774, March 2010.
[ 3 ] Trzynadlowski, A.M., Legowski, S., “Minimum-loss vector PWM strategy for three-phase inverters”, IEEE Trans. Power Electron., Vol. 9, No. 1, pp. 26–34, January 1994.
[ 4 ] Nguyen, N.V., Nguyen, B.X., Lee, H.H., “An optimized discontinuous PWM method to minimize switching loss for multilevel inverters”, IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 3958–3966, September 2011.
[ 5 ] Yunxiang Wu., Shafi, M.A., Knight, A.M., McMohan, R.A., “Comparison of the effects of continuous and discontinuous PWM schemes on power losses of voltage-sourced inverters for induction motor drives”, IEEE Trans. Power Electron., Vol. 26, No. 1, pp. 182–191, January 2011.

延伸閱讀