透過您的圖書館登入
IP:3.133.87.156
  • 學位論文

利用酸氧化前後奈米碳管吸附鄰苯二甲酸酯類之特性研究

Adsorption of phthalate esters by carbon nanotubes with and without oxidation

指導教授 : 秦靜如
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究藉由酸氧化在奈米碳管表面引入官能基,利用奈米碳管吸附不同碳數的鄰苯二甲酸酯類(鄰苯二甲酸二甲酯、鄰苯二甲酸二乙酯及鄰苯二甲酸二丁酯),探討奈米碳管表面官能基對不同烷基側鏈之苯環衍生物吸附影響。 研究結果發現,經硝酸氧化處理後奈米碳管表面引入COOH官能基,且管外或總表面積皆與酸氧化前相差不大。由動力吸附實驗發現,奈米碳管吸附鄰苯二甲酸酯類達平衡所需時間順序為鄰苯二甲酸二甲酯> 鄰苯二甲酸二乙酯 > 鄰苯二甲酸二丁酯,並遵循擬二階動力模式。等溫吸附曲線實驗結果顯示,鄰苯二甲酸二甲酯與鄰苯二甲酸二乙酯由於疏水性不同,未經酸氧化之奈米碳管對於相對疏水之鄰苯二甲酸二乙酯表現出較高之吸附能力。再者,經酸氧化後之奈米碳管因水簇效應及電子分佈之影響導致吸附量下降。不論酸氧化前後的奈米碳管,對於鄰苯二甲酸二甲酯及鄰苯二甲酸二乙酯的吸附較符合Freundlich模式。經熱力學分析得知酸氧化前後之奈米碳管吸附鄰苯二甲酸二甲酯之ΔH 0< 0,顯示此吸附為放熱反應;而酸氧化前後之奈米碳管吸附鄰苯二甲酸二乙酯之ΔH0 > 0,顯示此吸附為吸熱反應。酸氧化前與後之奈米碳管吸附鄰苯二甲酸二甲酯之ΔG0階隨溫度上升而上升,顯示在低溫有利於吸附;酸氧化前與後之奈米碳管吸附鄰苯二甲酸二乙酯為高溫有利於吸附。又由ΔH0及ΔG0得知碳管吸附鄰苯二甲酸酯類為物理吸附。在不同pH值下,未經酸氧化奈米碳管吸附鄰苯二甲酸二甲酯及鄰苯二甲酸二乙酯實驗結果為當pH = 9時之吸附量比pH值為3與6高;而經酸氧化後奈米碳管吸附鄰苯二甲酸二甲酯及鄰苯二甲酸二乙酯,結果顯示與未經酸氧化奈米碳管吸附鄰苯二甲酸二甲酯及鄰苯二甲酸二乙酯相較之下,pH值為9之吸附量有下降之趨勢。其原因為未經酸氧化奈米碳管與鄰苯二甲酸二甲酯及鄰苯二甲酸二乙酯之π-π分散力增強,造成吸附量上升;而經酸氧化奈米碳管與鄰苯二甲酸二甲酯及鄰苯二甲酸二乙酯間靜電斥力較未經酸氧化奈米碳管大導致吸附量下降。

並列摘要


Adsorption of phthalate esters (PAEs) by single-walled carbon nanotubes (SWCNTs) with and without oxidation by nitric acid was conducted to investigate the influences of ester substitution groups on the benzene rings on the adsorption by CNTs. Dimethyl phthalate (DMP)、diethyl phthalate (DEP) and dibutyl phthalate (DnBP) were used. With proper treatment, the BET surface areas and pore size distributions of SWCNTs before and after oxidation were almost the same, thus, the influences of oxidation of SWCNTs on the adsorption of PAEs would only be contributed by the oxygen-containing surface group. The adsorption rates from the fastest to the slowest were DMP, DEP, and DnBP, and followed the pseudo-second order kinetic model. The Freundlich isotherm models fitted the adsorption of DMP and DEP by both SWCNTs with and without acid oxidation. Both SWCNTs with and without oxidation had better adsorption capacities for DEP than for DMP. This may be because that the DEP is less polar than DMP and results in stronger attraction to non-polar graphene. Furthermore, water clustering and electronic distribution of oxidized SWCNTs resulted in decreases in the adsorption capacity. The adsorption of DEP was endothermic while the adsorption of DMP was exothermic The enthalpy change and free energy change suggested that the adsorption of PAEs onto SWCNTs was a physisorption process. The adsorption capacity of PAEs by without oxidation SWCNTs at solution pH of 9 were more than those at solution pH values of 3 and 6. Dissociation of ester groups at high solution pH resulted in stronger???? interactions between the PAEs molecules and the SWCNTs. For oxidized SWCNTs, the adsorption capacity at high pH decreased, which is due to the electrostatic repulsion between the dissociated surface groups on SWCNTs and ester groups on PAEs.

參考文獻


[33] 楊惠珠,「利用奈米碳管吸附水中壬基苯酚之研究」,碩士論文,國立台灣大學環境工程研究所,2008。
[1] K. Yang and B. S. Xing, “Adsorption of fulvic acid by carbon nanotubes from water,” Environmental Pollution, 157, 1095-1100 (2009).
[2] C. J. M. Chin, L. C. Shih, H. J. Tsai, and T. K. Liu, “Adsorption of o-xylene and p-xylene from water by SWCNTs,” Carbon, 45, 1254-1260 (2007).
[3] 蔡涵哲,「以單壁奈米碳管吸附芳香族化合物吸附機制之探討」,碩士論文,國立中央大學環境工程研究所,2006。
[4] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56-58 (1991).

被引用紀錄


朱家偉(2015)。轉爐石與粒狀氫氧化鐵去除家庭污水中磷之研究〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2015.00549
杜玉琴(2011)。鄰苯二甲酸酯類和腐植酸在多壁奈米碳管上的吸附〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-1903201314422158
吳瑋羚(2012)。奈米碳管在鄰苯二甲酸酯類溶液與腐植酸溶液中之分散與絮凝〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-1903201314432724
徐俊國(2014)。奈米金銀及甲殼素活性碳之濾網吸附動力模式〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0708201416515400

延伸閱讀