透過您的圖書館登入
IP:3.138.174.95
  • 學位論文

銅與氧化銅奈米微粒之自旋極化效應

The spin polarization effect of Cu and CuO nanoparticles

指導教授 : 李文献
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本實驗採用熱蒸鍍法製備銅奈米微粒,並利用熱板對其加熱得到氧化銅奈米微粒。藉由X光繞射實驗與結構精算軟體得知樣品分別為純銅及含有氧缺陷的氧化銅,其化學式為CuO0.94。利用積分寬法和共同體積函數擬合X光繞射譜圖,得到銅和氧化銅奈米微粒的粒徑分別為29 nm與4.2 nm。   使用物理特性量測系統測量銅與氧化銅奈米微粒在不同實驗溫度下的磁化曲線,並利用朗之萬函數、布里淵函數和反磁線性項對其M-H圖作擬合。在低場時可由自旋極化現象描述,高場部分則隨溫度上升,黎曼效應逐漸減小而反磁行為逐漸增加,最後由冷次反磁項所主導。銅與氧化銅奈米微粒之磁矩在低溫(T<100K)時皆可以由熱磁激發效應來解釋。銅奈米微粒之飽和磁化強度隨溫度關係可由自旋波之熱激發解釋,氧化銅奈米微粒則無法利用此模型描述。兩樣品之磁化強度隨溫度關係圖於低溫時皆由朗之萬項所主導,但銅在55K附近有一小峰值發生,且高溫時的自旋波貢獻並不明顯;而氧化銅則是於135K附近磁化強度隨溫度有緩慢遞增的現象。

關鍵字

奈米微粒 氧化銅 自旋極化

並列摘要


The copper nanoparticles were fabricated by the thermal evaporation method, heated to form cupric oxide nanoparticles. The chemical composition of the samples are pure Cu and CuO0.94 by X-ray diffraction and General Structure Analysis System. The mean particle diameter of Cu and CuO nanoparticles are 28.69 nm and 4.2 nm respectively determined using X-ray diffraction patterns. Magnetic properties were measured by Physical Property Measurement System. The M-H curve of Cu and CuO0.94 nanoparticles can be characterized by a Langevin function, a Brillouin function plus a diamagnetic term. The M-H curves of two samples can be elucidated by the spin polarization in the low applied magnetic field, but the magnetization in the high field is predominated by diamagnetic term with temperature increment. The magnetic moment of Cu and CuO0.94 nanoparticles can be explained by thermal-induced effect at low temperature. The saturated magnetization of the copper nanoparticles can be described by the spin-wave excitation model, but the Cupric oxide can’t. The M-T curves of two samples are dominated by Langevin function at low temperature. The magnetization of Cu nanoparticles has a small peak value occurrence nearby 55K, and spin-wave contribution is not obvious at high temperature. The magnetization of CuO0.94 nanoparticles increases gradually with temperature nearby 135K.

並列關鍵字

spontaneous nanoparticles CuO Cu

參考文獻


[1] 銅氧核殼奈米顆粒間交互作用對自旋極化之影響,陳乃維,國立中央大學碩士論文(2008)
[2] 核殼結構的奈米Cu/Cu2O 微粒之自旋極化與弱鐵磁現象,傅喬玟,國立中央大學碩士論文(2007)
[3] 奈米氧化亞銅微粒的氧化缺陷及自旋極化,林裕翔,國立中央大學碩士論文(2007)
[4] 銅氧核殼奈米顆粒的雙分量自旋極化,李宗儒,國立中央大學碩士論文(2008)
[2] X光繞射原理與材料結構分析 許樹恩,吳泰伯 中國材料科學學會(2006) [3] 擬合X光繞射峰形判定奈米微粒粉末的粒徑分布,王進威,國立中央大學碩士論文(2006)

被引用紀錄


林聖達(2011)。氧化亞銅與氧化銅奈米微粒的熱縮現象探討〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-1903201314415040
邱嬿真(2011)。TiO2、CuO奈米潤滑脂應用於氣壓缸之摩擦特性研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0608201103112600
陳廷瑋(2014)。銅與氧化銅奈米顆粒複合系統自旋極化參數探討〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201511593179
江建鋒(2014)。氧化銅奈米顆粒反鐵磁與鐵磁耦合研究〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201511585100

延伸閱讀