透過您的圖書館登入
IP:3.142.124.252
  • 學位論文

非共平面雙波導光路之光連接模組

Optical interconnect module with dual non-coplanar guide-wave optical paths

指導教授 : 伍茂仁
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


中文摘要 本研究提出一個非共平面雙波導光路之光連接模組,其主要結構為一分光光路,此技術可應用於晶片內或晶片與晶片間光學訊號傳遞及擴充,也可作為檢視光學訊號的完整性。在架構上,模組屬於主動電子元件與與被動光子元件異側之光連接架構,利用波長為1550 nm的紅外光源穿透SOI基板,經過具光學品質的45°反射面達到非共平面光學耦合,透過分光結構可分為雙光路,再藉由具光學品質之45°反射面,將雙光路反射穿透SOI晶圓至主動電子元件層接收,將光電訊號做進一步的整合。光強的比例部分,可藉由調整經過 45°反射面達到非共平面光學耦合的波導寬度,進而得到不同比例的光強。此非共平面雙波導光路包含45°斜面反射溝槽、梯形脊狀波導與分光路結構波導。   本研究完成非共平面雙波導光路之光學模擬、製程與光學特性量測。上底寬40 ~75 μm的非共平面轉折波導光路,其插入損耗量測值在-3.04 dB至-3.22 dB。上底寬40 ~75 μm的非共平面雙波導光路的總插入損耗介於-3.46 ~ -3.9 dB,與非共平面轉折波導光路相比較插入損耗平均增加0.51 dB。上底寬40~75 μm非共平面雙波導光路之插入損耗,光路1量測值為-4.72 ~ -6.13 dB,光路2量測值為-11.48 ~ -6.86 dB。在雙光路的光強比例部分,可從8.3 : 1.7調整至5.4 : 4.6,並隨著上底寬的增加,光路1產生遞減的趨勢,而光路2則產生遞增的趨勢。上底寬45 μm的入射端的單模光纖位移容忍度,在水平方向(X軸方向)耦合能量損失1 dB時,光路1為50 μm與光路2為50 μm。垂直方向(Z軸方向)耦合能量損失1 dB時,光路1為26 μm與光路2為24 μm。上底寬55 μm的入射端的單模光纖位移容忍度,在水平方向(X軸方向)耦合能量損失1 dB時,光路1為52 μm與光路2為37 μm。垂直方向(Z軸方向)耦合能量損失1 dB時,光路1為25 μm與光路2為20 μm。

並列摘要


This research involves the design and evaluation of an optical interconnect module with non-coplanar dual waveguide paths. The primary feature of this module is a split optical path that can be used for transmission of optical signals within a chip or between chips, and can also be used to check the integrity of the optical signal. The module can serve as an optical interconnect framework between active electronic components and passive photon components are opposite side. The non-coplanar optical coupling is accomplished in the following manner. A 1550 nm infrared source first passes through a SOI substrate and is reflected from a 45-degree optical quality surface. It is then split into dual optical paths. Then it’s by using the 45-degree reflect surface to reflect the dual optical paths through the SOI substrate to active electronic component receiver to integrate the optical- electrical signal. The proportion of optical intensity is able to be adjusted by changing the width of waveguide that pass through the 45-degree reflect surface. Even further to get different proportion of optical intensity. This non-coplanar dual waveguide of optical paths includes 45-degree reflection groove, trapezoidal ridge waveguide and optical splitter waveguide. A laboratory model of the module was designed, fabricated, and key optical performance characteristics were evaluated. The insertion loss of upper-base-width 40~75μm non-coplanar bending waveguide is -3.04 to -3.22 dB. The total insertion loss of upper-base-width 40~75 μm non-coplanar dual waveguide is between -3.46 to -3.9 dB. Compared with non-coplanar bending waveguide, the total insertion loss averagely increases 0.51 dB. The measurements of insertion loss of upper-base-width 40 ~ 75 μm non-coplanar waveguide are -4.72 ~ -6.13 dB on optical path 1, and -11.48 ~ -6.86 dB on optical path 2. The proportion of optical intensity of dual optical path can be adjusted from 8.3 : 1.7 to 5.4 : 4.6, with the increase of upper-base- width, optical path 1 decrease and optical path 2 increase. Optical single mode fiber misalignment tolerance was also measured. For the 45 μm width module, 50 μm in path 1 and 50 μm in path 2 resulted in a horizontal (x-axis) loss of 1 dB, while for a 1 dB vertical (z-axis) loss, the corresponding tolerances were 26 μm for path 1 and 24 μm for path 2, respectively. For the 55 μm width module, the corresponding tolerances were 52 μm and 37 μm (horizontal 1 dB) and 25 μm and 20 μm (vertical 1dB), respectively.

參考文獻


2. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proceedings of the IEEE 88 (6), 728-749, (2000)
4. R. Heming, L. C. wittig, P. Dannberg, J. Jahns, E. B. Kley, and M.Gruber, “Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE J. Lightwave Technol., 26, 2136-2141 (2008).
5. P. Lukowicz et al., “Optoelectronic interconnection technology in the HOLMS system,” IEEE J. Sel. Top. Quantum Electron., 9, 624-635 (2003).
6. H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processesfor volume production of highly reliable fiber optic components for telecom- anddatacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B, 21, 147-156 (1998).
7. J. Yeh, R. K. Kostuk, and K. Tu, “Hybrid free-space optical bus system for board-to-board interconnections,” Appl. Opt., vol. 35, no. 32, pp. 354–6364, (1996)

延伸閱讀