透過您的圖書館登入
IP:18.220.163.91
  • 學位論文

藉由串接高通材料提升 石墨烯感測器靈敏度

Increasing the Sensitivity of Graphene Sensors

指導教授 : 謝雅萍
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來,越來越多研究人投入石墨烯感測器的研究領域,問起為何全心投入於該領域,總會看到研究者如數家珍般述說著石墨烯的多項優點,表面積大、低電阻率、高遷移率、抗雜訊能力高…等等,然而,一切的優點都會因低阻抗和低訊雜比嘎然而止,這兩項特性將會造成石墨烯感測器的感測訊號被大量的電流訊號所蓋掉,故研究中往往得加上些複雜的處理或串接鎖相放大器來提升訊號強度,然而若使用這些手段,將會失去石墨烯原先高速反應與寬頻帶吸收的特性,在此我們提出一種可 ” 放大 ” 光敏度 (Ion / Ioff)的方式,藉由添加一個具高通性質的絕緣位障,任何一個微小的響應通過皆可放大為一個明顯的訊號,藉由該方法所製成之石墨烯感測器可量測到近4000倍的光敏度,同時仍保有石墨烯原先高速反應與寬頻帶吸收的特性,,經由化學氣相沉積法的製程,則可獲的大面積、可饒式的石墨烯光感測元件。該種放大機制可應用各種感測器,提升訊號強度,同時也提升阻抗值來達到降低功耗的需求。

關鍵字

增益 感測器 高敏度 石磨烯 機制

並列摘要


Graphene based sensors have captured the attention of researchers due to their potential for high sensitivity operation in many areas. Graphene’s advantages, such as high surface area, low electrical noise conduction and low intrinsic carrier conduction, however, are offset by its low electric impedance and consequently low signal-to-noise ratio. We here introduce a universally applicable approach to improving the sensitivity of graphene based sensors by adding an element with an energy selective carrier transmission. This approach is illustrated by introducing a dielectric barrier in a photosensor to amplify photoinduced changes of the Fermi energy. An increase in photosensitivity by 3 orders of magnitude (Ion / Ioff ~ 4000) was observed while retaining graphene’s attractive broad band detection and high speed response. This unprecedented photosensitivity allowed the identification of a new light sensing mechanism that enables the application of graphene in large scale, flexible photosensors. These findings demonstrate the potential of dielectric barriers as an example for energy selective carrier transmitting elements enhancing the performance of graphene sensors.

並列關鍵字

Sensor Photosensor Graphene

參考文獻


[1] Beckmeier, D.; Baumgärtner, H., Metal-oxide-semiconductor diodes containing C60 fullerenes for non-volatile memory applications. Journal of Applied Physics 2013, 113 (4), 044520.
[3] Allen, M. J.; Tung, V. C.; Kaner, R. B., Honeycomb Carbon: A Review of Graphene. Chemical Reviews 2010, 110 (1), 132-145.
[4] Jung, I. W.; Xiao, J. L.; Malyarchuk, V.; Lu, C. F.; Li, M.; Liu, Z. J.; Yoon, J.; Huang, Y. G.; Rogers, J. A., Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proceedings of the National Academy of Sciences of the United States of America 2011, 108 (5), 1788-1793.
[5] Wang, G.; Shen, X.; Yao, J.; Park, J., Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 2009, 47 (8), 2049-2053.
[6] Su, C. Y.; Lu, A. Y.; Xu, Y. P.; Chen, F. R.; Khlobystov, A. N.; Li, L. J., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. Acs Nano 2011, 5 (3), 2332-2339.

延伸閱讀