透過您的圖書館登入
IP:3.21.104.109
  • 學位論文

太陽光熱分離裝置之最佳化結構設計、製作與應用之研究

A Study of Optimum Structural Design、Fabrication and Application for Solar Light-Thermal Separator

指導教授 : 王欽戊
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著人類經濟的發展,漫無節制地消耗地球環境資源,使得化石燃料來源日漸減少,化石燃料的使用所導致「全球暖化」對於人類文明史上造成前所未見的結合自然生態、經濟、社會、人們健康的挑戰。如何珍惜地球資源並開發替代性能源,在發展經濟與維護環境之間求取平衡,便成為全球性的重要課題。 太陽能是人類能利用最豐富、容易取得而且又清潔的能源,因此太陽能一直是我們地球所有人們想要利用的能源。而太陽光中可見光與紫外光的部份大約占了58%(提供光能),紅外線部分則約占42% (提供熱能),若能有效且充分利用不同波段的太陽能源,那麼對現今能源短缺的問題將會有很大的幫助。 因此,本研究藉由氣凝膠在可見光範圍下具高透明度,又是優良的熱絕緣體具有良好的隔熱特性,與玻璃結合製作太陽光熱分離裝置,將太陽光與太陽熱分別分離後再吸收利用。將氣凝膠製作成氣凝膠塗料,塗料塗佈至耐熱玻璃形成氣凝膠塗料玻璃。探討不同濃度之氣凝膠塗料以及不同氣凝膠塗料薄膜厚度所製成的氣凝膠塗料玻璃,其光穿透度和隔熱效果之研究。最後將氣凝膠塗料玻璃結合太陽能板及熱電晶片,製作太陽光熱分離發電裝置,藉由氣凝膠塗料玻璃將太陽光與太陽熱分離,太陽光可見光波段穿透過氣凝膠塗料玻璃至太陽能板將太陽光轉為電能。而氣凝膠塗料玻璃隔絕出太陽光中紅外線的輻射熱源傳導至熱電晶片,將太陽熱轉為電能,將整個太陽能波段,太陽光與太陽熱全面性的有效利用。同時也可讓太陽能板有效地在較低溫環境工作,藉此而提高太陽能光電模組整體的效能與壽命。 經由本研究的結果可發現,氣凝膠塗料玻璃在太陽下的光穿透率最佳可達55%,其隔熱效果約2°C之溫差。在太陽光下,太陽光熱分離裝置有效驅動碳纖維車與風扇,另外太陽光熱分離裝置所產生之光轉電與熱轉電之電能 也可透過微小電力儲能裝置對2.4V/30mAh之鈕扣型鎳氫電池進行儲能,約六小時即可完全充電完成。可見本研究之太陽光熱分離裝置具有顯著的功能與應用之可行性。

並列摘要


As human economic development, intemperate environmental resources consumed the earth, making dwindling fossil fuel sources. The use of fossil fuels leads to "global warming". For the history of human civilization, causing unprecedented challenges combined with the natural ecological, economic, society and people's health. How to cherish the Earth's resources and the development of alternative energy sources, between economic development and preservation of the environment to strike a balance, has become an important global issue. Humans can make use of solar energy is the most abundant and easily accessible and clean energy. Therefore, solar energy has been the use of our planet's all people want. The sunlight in the visible and ultraviolet part accounts about 58% (to provide optical energy), the infrared part of the sunlight about 42% (to provide thermal energy). If we can effectively and fully utilize solar energy in different bands, then the current energy shortage problem will be a great help. Therefore, this study by highly transparent aerogel in the visible range, and is an excellent thermal insulator has good insulation properties, combined with the production of solar light-thermal separator. Sunlight and solar heat were first isolated and then absorb. The production of aerogel into aerogel coating, and paint an aerogel coating to form the film on the heat - resistant glass. Discussion on aerogel coating with different concentrations and different aerogel coating film thickness made of aerogel coating glass, which effect of light transmittance and thermal insulation. Finally, the aerogel coating glass combine solar panels and thermoelectric chips, making solar light-thermal separator. By aerogel coating glass with the sun sunlight and thermal separation. Visible wavelengths of sunlight penetrate through the aerogel coating glass to solar panels convert sunlight into electricity. The airgel coating glass isolated sunlight infrared thermal radiation heat conducted to thermoelectric chips, solar heat into electricity. The infrared thermal radiation heat of sunlight isolated from aerogel coating glass conducted to thermoelectric chips, solar heat into electricity. The entire solar band, sunlight and solar heat comprehensive effectively. It also allows solar panels to effectively work in a lower temperature environment, and thereby improve the overall performance of solar photovoltaic modules with lifetime. From the results of this study can be found, under the sun, the optimum light transmittance up to 55% for aerogel coating glass. The heat insulating effect of the temperature difference for aerogel coating glass is about 2 °C. At the sunlight, solar light-thermal separator can drive the carbon fiber car and the fan effectively. The generated electrical power of solar light-thermal separator can be charged into 2.4V/30mAh NiMH battery with tiny electric energy storage device successful , about six hours to fully charge completion. So we can see the study of solar light-thermal separator has a significant function of the feasibility and application.

參考文獻


[4]. Terry M. Tritt, Harald Bottner and Lidong Chen, Thermoelectrics:Direct Solar Thermal Energy Conversion,
[5]. Marti A and Araujo GL, Limiting efficiencies for photovoltaics solar conversion in multi-gap systems,
Solar Energy Materials and Solar Cells, 43, 203-222, (1996).
[6]. G. P. Smestad, Solar Energy Mater. Solar Cells, 82, 227, (2004).
[7]. H. Spanggaard, and F. C. Krebs, Solar Energy Mater. Solar Cells, 83, 125, (2004).

延伸閱讀