透過您的圖書館登入
IP:18.221.222.47
  • 學位論文

奈米壓印技術製作光柵並結合上金奈米粒子應用於波導模態共振生化感測器

Nanoimprint Fabricated Grating Modified with Gold Nanoparticles and its Application to Guided Mode Resonance Biosensor

指導教授 : 周禮君
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究以奈米製程技術進行波導模態共振 (guided mode resonance, GMR )生化感測平台的開發,此生化感測系統採用金奈米粒子的特性以及光柵的波導效應做結合,利用光柵作為光耦合的波導元件,並使球型金奈米粒子在特定光波長的照射下會產生區域性的電漿共振,此效應相較於一般傳統GMR的波導模態共振的機制更利於生化感測,主要是由於球型金奈米粒子所產生的粒子電漿共振的感測深度僅存在於金奈米粒子的表面數十奈米的等級範圍內,此特性有利於針對表面生化結合的反應進行測定,除了上述優點之外金奈米粒子還具有免標定且可透過在金奈米表面修飾上混合自組裝單層能有效解決在生化感測時非特異性吸附的問題。以濺鍍TiO2 (60nm)於壓印光柵作為波導層可得到最佳的波長感測靈敏度,靈敏度為120.54 nm/RIU,另外以此條件進行金奈米粒子的表面修飾,並固定激發波長在532 nm進行光強度變化的及時偵測得到的靈敏度為7.73 AU/RIU,最後在生化感測的部分是將混合自組裝單層修飾於球型金奈米粒子的表面再修飾上Ovalbumin 生化分子進行檢測,偵測極限可達1.2x10-8 M,顯示此系統具有免標定且可即時偵測的優點。

並列摘要


In this study, guided mode resonance (GMR) biosensing platform combining the features of gold nanoparticles with grating waveguide is developed. This approach has an advantage as compared to the traditional guided mode resonance approach in biosensing, namely, the sensing depth of particle plasmon resonance generated on the gold nanoparticle surface is just tens of nanometers. This feature is useful for measuring biochemical binding on nanoparticle surface. Besides, the use of gold nanoparticles in biosensing also have two other features: label-free and real-time. It also allows using mixed self-assembled monolayer on gold nanoparticle surface to reduce nonspecific adsorption problem. The waveguide was fabricated by sputtering TiO2 (60nm) on the imprinted grating. The sensor has a wavelength shift sensitivity of 120.54 nm/RIU. When gold nanoparticles was used to modify the grating surface, an absorbance sensitivity of 7.73 AU/RIU at an excitation wavelength of 532 nm is achieved. Finally, the gold nanoparticle surface is modified by a mixed self-assembled monolayer and further conjugated with anti-OVA for detection of ovalbumin. The limit of detection (LOD) is 1.2x10-8 M.

並列關鍵字

無資料

參考文獻


[22] 柯麗霞, 陳正達, 王崇人, 奈米科技的早期發展歷史. 2004, 62, 569~578
[23] 賴炤銘,李錫隆,奈米材料的特殊效應與應用,化學 2003, 61, 585~597.
[1] B. J. Jeon, J. C. Pyun, Biochip Journal 2008, 2, 269-273.
[4] K. Länge, F. Bender, Anal. Chem. 2003, 75, 5561-5566.
[5] M. Mehrvar, C. Bis, Anal. Sci. 2000, 16, 677-692.

延伸閱讀