透過您的圖書館登入
IP:3.22.242.141
  • 學位論文

鍺錫量子井全光纖通訊波段光偵測器之研製

Fabrication and Characterization of GeSn/Ge Quantum-well Photoconductors Operating over all Telecommunication Bands

指導教授 : 張國恩
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


矽與鍺是目前主要積體電路中最常使用的四族半導體材料,但是以矽與鍺為材料的光偵測器之偵測範圍無法涵蓋到整個光纖通訊波段之中,而使用三五族半導體材料雖可以達到短波紅外線(Short-wave infrared,SWIR)的範圍,但因為與積體電路整合較困難且價格昂貴,因此本文之研究動機為製作能與積體電路整合並應用於全光纖通訊波段之光偵測器,作為晶片尺度光連接平台之關鍵元件。材料採用新興四族半導體材料鍺錫合金來製作光偵測器,並使用多重量子井結構,藉由多重量子井結構達到光偵測器重要的指標如低暗電流、高光響應度的效果。 本文利用與標準矽製程完全相容之製程成功地製作出鍺錫/鍺量子井正向入射式之金屬半導體金屬光偵測器,光偵測器平台面積為(1500μm×1500μm),在偏壓2伏特時,光響應度量測實驗結果顯示光偵側截止波長成功地延伸至1800nm,超越了鍺光偵測器的吸收極限1550nm並能完整地涵蓋光纖通訊中使用的所有波段,證明鍺錫材料做為光偵測器的優勢。未來當暗電流在降低及響應度在提高時,鍺錫/鍺量子井光偵測器將能成為新興的高性能短波紅外線光偵測器,並能在通訊、氣體偵側、軍事上有重要的應用。

並列摘要


Silicon and germanium are the dominant materials for integrated circuits. However, with their large bandgaps, photodetectors made of Si, Ge, and their alloys cannot cover the entire fiber optical communication windows. While photodetection in the short-wave infrared band can be achieved using narrow bandgap III-V semiconductors, it is not possible to integrate these devices on Si. This study focus on developing infrared photodetectors that can cover the entire telecommunication windows and can be integrated on Si as a key building block for electronic-photonic integrated circuits. Narrow-bandgap GeSn/Ge multiple-quantum-well is used to fabricate photodetectors to achieve low-dark current and high responsivity. In this study, GeSn/Ge multiple-quantum-well photoconductos were fabricated using CMOS-compatible processings. At 2V bias voltage, optical responsivity experiments show that the photodetection range has been extended from 1550 nm to beyond 1800 nm, covering the entire telecommunication bands. As the responsivity is further enhanced and the dark current is reduced, this GeSn/Ge multiple-quantum-well short-wave infrared photoconductor could has many useful applications, such as telecommunications, gas-sensing, and military.

參考文獻


[16]鄭一民,磷砷化銦鎵化合物半導體之光學特性研究,碩士論文,私立中原大學,民國90年
[15]J. Werner, M. Oehme, A. Schirmer, E. Kasper, and J. Schulze, " Molecular beam epitaxy grown GeSn p-i-n photodetectors integrated on Si ", Thin Solid Films 520(8), 3361–3364 (2011).
[22]K. C. Balram, R. M. Audet, and D. A. B. Miller, "Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths", Optics Express 21(8), 10228-10233 (2013).
[23]J. Mathews, R. Roucka, J. Xie, S. Yu, J. Menéndez, J. Kouvetakis, "Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications", Applied Physics Letters 95(13), 133506 (2009).
[25]Y. Peng, H. H. Cheng, V. I. Mashanov, and G. Chang,"GeSn p-i-n waveguide photodetectors on silicon substrates", Applied Physics Letters 105(23), 231109 (2014).

延伸閱讀