透過您的圖書館登入
IP:3.139.80.15
  • 學位論文

單脈衝定位系統與新式峰值檢測演算法

Design of Monopulse Radar Positioning System Based on The Peak Tracking Positioning Algorithm

指導教授 : 張嘉展
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文運用單脈波雷達技術,設計室內一維和二維無線定位系統。為了提升室內定位解析度,本論文提出一套新的定位演算法。利用微處理機對於前端相移器的控制,使定位機達到高密度的波束掃描,最後藉由不同接收數據的比較方式找出其對應之峰點位置,完成高精細定位之成效。   定位系統在硬體方面包含2.4 GHz定位讀取機內之一維/二維圓極化天線陣列、一維/二維相位可調式比較器電路、訊號強度接收模組、壓控振盪模組與主動式標籤電路。而後端電腦的部分,則以微電腦控制器取代先前的電腦進行數值演算,以減少系統尺寸與成本。數據處理與控制方面,則運用微電腦控制器進行相移器電壓的調控,藉由MCU擷取讀起機所讀取到的角度資訊,最後利用定位演算法計算出物體的所在位置。一維定位系統分別在兩種環境下進行實測,首先於無反射室中進行單機角度量測,量測結果之最大誤差為0.4°,準確度在0.2°誤差範圍內之發生機率為82.67%。其後於空曠平面空間進行角度之量測,定位範圍在4×4 m2時,量測精準度為1°,準確度為2.8°在誤差範圍內之發生機率為78%。   二維定位系統分別在三種環境下進行實測,首先選擇於無反射室中進行不同平面( 與 )之角度量測,在 平面下量測結果之最大誤差為0.4°,準確度在0.2°誤差範圍內之發生機率為80.75%。另外,在 平面下量測結果之最大誤差為0.4°,準確度在0.2°誤差範圍內之發生機率為82.22%。之後於高干擾環境下進行量測,定位範圍為0.8×0.8 m2,讀取機與定位標籤的距離固定為1.5 m,其平均量測距離誤差大約為12 cm。最後則運用於人體內進行微創手術器械定位,定位範圍為14×14 cm2,讀取機與定位標籤的距離固定為10 cm,其平均量測距離誤差大約為1.138 cm。

並列摘要


This thesis present one-dimensional/two-dimensional positioning system based on enhanced monopulse radar principle. In order to improve the indoor positioning accuracy, a new positioning algorithm has been proposed in this work. By controlling the tunable phase shifters through microprocessor, the proposed system can achieve intensive beam scanning, resulting in the high positioning accuracy. The implemented 2.4-GHz radar system are composed of a circular-polarization antenna array, tunable comparators, received signal strength indicators, voltage-controlled oscillator and active tags.   The one-dimensional system was tested in two indoor environments. The first measurement was conducted in an anechoic chamber. The results showed that 82.22% of measuring point with less than 0.2° angular error. The second measurement was conducted in an empty space of 4×4 m2. The results showed that 78% of measuring point with less than 2.8° angular error.   The two-dimensional system was tested under three different scenarios. The first measurement was also conducted in chamber. With angular error less than 0.2°, the cumulative probability is 80.75% for phi-plane, and 82.22% for theta plane, respectively. The second measurement was conducted in a space of 0.8×0.8 m2 with certain degree of interference, and the distance between Rx and Tx was 1.5 m. The results showed that the average distance error was 12 cm (4.57°). The third measurement was applied to in-body surgical instrument positioning, where the pork is used as vivo tissues. The system can achieve the average distance error as 1.138 cm (6.49°) within a 14×14 cm2 positioning area, which shows the great potential in minimally invasive surgery.

參考文獻


[2] H. Peter Dana. Global positioning system overview. Website, 2000. http://www.colorado.edu/geography/gcraft/notes/gps/gps.html.http://www.union.org/mic_new/tc/info.php
[5] S. J. Ingram, D. Harmer and M. Quinlan, “UltraWideBand Indoor Positioning Systems and their Use in Emergencies,”Proc, IEEE Conference on Position Location and Navigation Symposium, April 2004, pp. 706-715.
[6] Y. Zhang, W. Liu, Y. Fang and D. Wu, “Secure localization and authentication in ultra-wideband sensor networks,”IEEE J. Select. Areas Commun., vol. 24, no. 4, 2006, pp. 829-835.
[11] M. Brunato and R. Battiti, “Statistical learning theory for location fingerprinting in wireless LANs,”Comput. Netw., vol. 47, pp, 825-845, 2005.
[12] C. L. Wu, L. C. Fu, and F. L. Lian, “WLAN location determination in ehome via support vector classification,”in Proc. IEEE Int, Conf, Netw., Sens. Control, 2004, vol. 2, pp, 1026-1031.

被引用紀錄


陳鵬宇(2015)。微創手術無線定位系統之天線設計與系統量測建置〔碩士論文,國立中正大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0033-2110201614035109
李俊億(2016)。使用和差技術之微波小型生物定位接收機〔碩士論文,國立中正大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0033-2110201614072508

延伸閱讀