透過您的圖書館登入
IP:3.133.131.168
  • 學位論文

運用步階阻抗或槽線設計的寬頻帶交叉器暨理論分析

Analysis and Design of Wide-Band Crossovers With Step-Impedance or Sloted Lines

指導教授 : 湯敬文
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文最主要分成兩部分,第一部分是第四章節的槽線寬頻交叉器,這是從傳統的窄頻矩形交叉器出發,藉由挖槽線去產生若干特性,例如:埠前挖槽孔可以為隔離度提供零點、透過髮夾彎形槽孔則是可以產生寬頻的特性……等等,最後可以得到寬頻交叉器且在頻帶內具有良好隔離度的特性,另外在尺寸方面也比傳統矩形交叉器面積小上許多,代表挖了槽孔可以讓諧振頻率往低頻移動,所以電路面積方面可以做的比傳統的小。另外,電磁模擬也和量測有很好的一致性。 第二部分是第五章節的運用步階阻抗設計的寬頻交叉器,此一交叉器最大的特點是兩組操作頻帶不重疊,並且運用步階阻抗諧振器的特性來凝聚模態,使得交叉器能獲得寬頻的特性,此加叉器操作頻率分別操作在2 GHz、4 GHz,並且此交叉器實作出來頻寬可達47%、及32%,反射損失皆在15dB以下。

並列摘要


The thesis consists of two sections. First section is wideband crossover using slot line in fourth chapter. This research starts from traditional narrow band rectangular patch crossover, and we produces a lot of performance by making slot on the patch. For example, digging slot in front of port can provide transmission zero of isolation, or digging bend slot can make wideband performance and so on. Finally, we can obtain wideband crossover with good isolation at passband. This design is smaller than traditional rectangular patch crossover because digging slot can make resonant frequency going to lower frequency. The measure has a great agreement with simulation. Second section is wideband crossover using step impedance resonator in fourth chapter. The obvious feature is that the crossover can split two operating frequency, and use step impedance resonator to make resonant mode coherence, so this circuit can generate wideband performance. The crossover operates at 2 GHz and 4 GHz, respectively, and the measure result of bandwidth can be 47%, and 32%. Both return loss are beneath 15 dB.

參考文獻


[1] G. E. Ponchak, and E. Tentzeris, “Development of finite ground coplanar (FGC) waveguide 90 degree crossover junctions with low coupling,” in IEEE MTT-S Int Dig., Boston, MA USA, pp. 1891-1894, June 2000.
[2] S. C. Wu, H. Y. Yang, N. Alexopoulos, and I. Wolff, “A rigorous dispersive characterization of microstrip cross and T junctions,” IEEE Trans. Microw. Theory Tech., vol 38, no. 12, pp. 1837-1844, Dec. 1990
[3] T.-S. Horng, “A rigorous study of microstrip crossovers and their possible improvements,” IEEE Trans. Microw. Theory Tech., vol. 42, no 9, pp. 1802-1806, Sep. 1994
[4] M. Abbosh, “Wideband planar crossover using two-port and four-port microstrip to slotline transitions,” IEEE Microw. Wireless Components Lett., vol. 22, no. 9, pp. 465-467, Sep. 2012
[5] W. Liu, Z. Zhang, Z. Feng, and M. Iskander, “A compact wideband microstrip crossover,” IEEE Microw. Wireless Components Lett., pp. 254-256 vol. 22, no. 5, May 2012

延伸閱讀