透過您的圖書館登入
IP:3.17.110.58
  • 學位論文

螺旋雙二并噻吩環戊二烯作為鈣鈦礦太陽能電池的電洞傳輸材料

Spiro-bicyclopentadithiopene Based Hole-transport Materials for Perovskite Solar Cells

指導教授 : 陳錦地 曾炳墝
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文成功的合成出五個鈣鈦礦太陽能電池的電洞傳輸材料,鑑定並與現在常用在鈣鈦礦太陽能電池的spiro-OMeTAD比較和測量其熱性質、物理性質和光學性質。五個電洞傳輸材料分別為以spiro-fluorene和SCPDT為核心,而末端基團為三苯胺基或是為一個、兩個、三個3HT (3-hexylthiophene, P3HT高分子的重複單體)的基團,各為spiro-OMeTABD、SCPDT-1、SCPDT-T1、SCPDT-2T、SCPDT-3T。 在UV-vis吸收光譜中,SCPDT-1較spiro-OMeTABD和spiro-OMeTAD紅移,推測核心SCPDT與其末端基團的苯環間有較小的二面角,能更有效地傳遞共軛電子延長有效共軛長度。而末端基團為噻吩的基團中,最大吸收波長的趨式為SCPDT-1T > SCPDT-2T > SCPDT-3T,推測是因為隨著噻吩數目增加造成共軛長度增長,導致吸收更紅位移。而材料在液態和薄膜狀態下的吸收紅移並不明顯,推測是其核心為3-D立體結構,導致堆疊並不明顯。 元件結構FTO / compact-TiO2 (c-TiO2) / mesoscopic-TiO2 (m-TiO2) / Perovskite / Spiro-MeOTAD / Ag之負型介觀結構的鈣鈦礦太陽能電池,其中SCPDT-1的最高能量轉換效率約為13.2%、開路電壓為0.92 V、短路電流為23.85 mA/cm2、填充因子為61.08%,而且沒有使用添加劑Li-TFSI,其轉換效率大於在相同情況下製備的spiro-OMeTAD。

關鍵字

太陽能電池

並列摘要


We have synthesized five novel hole transport materials and compared with spiro-OMeTAD for perovskite solar cell. In the case of UV-vis absorption spectra, SCPDT-1 is red shift than spiro-OMeTABD and spiro-OMeTAD, speculated that the dihedral angle of thiophene and benzene in SCPDT is smaller than spiro-fluorene, and SCPDT-1 strengthen the effective conjugation length. In the series of terminal groups with different thiophenes, the arrangement of materials with maxima wavelength absorption is SCPDT-1T > SCPDT-2T > SCPDT-3T, speculated that the more thiophenes on the terminal group cause more red shift. The material in both solution and films are almost at the same wavelength, speculated the cores are in 3-D structure, stacking phenomenon is not significant. The devices of perovskite solar cell are based on FTO / compact-TiO2 (c-TiO2) / mesoscopic-TiO2 (m-TiO2) / Perovskite / Spiro-MeOTAD / Ag with mesoscopic structure. The best power conversion efficiency of SCPDT-1 is 13.2% without Li-TFSI, open circuit voltage of 0.92 V, short circuit current of 23.85 mA/cm2, fill factor of 61.08%, it has better performance than the Spiro-OMeTAD device without LiTFSI.

並列關鍵字

solar cell

參考文獻


7.張富傑,國立臺灣師範大學化學研究所碩士論文,2013。
10.H. J. Snaith, J. Phys. Chem. Lett. 2013, 4, 3623-3630.
13.J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, Nanoscale, 2011, 3, 4088.
18.J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, T. C. Wen, Adv. Mater., 2013, 25, 3727-3732.
19.C. C. Chueh, C. Z. Liand, K. Y. Jen, Energy Environ. Sci., 2015, 8, 1160-1189.

延伸閱讀