透過您的圖書館登入
IP:3.145.81.232
  • 學位論文

應用於第五代行動通訊之基板集成波導相位陣列天線

Phase Array Antennas Based on Substrate Integrated Waveguides for 5th-Generation Mobile Systems

指導教授 : 吳建華 林士程
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


此論文設計並研製適用於第五代行動通訊系統 (5th Generation Mobile Systems) 之相位陣列天線,採用基板集成波導 (Substrate Integrated Waveguide, SIW)結構來設計電路,參考瑞典Ericsson公司將陣列天線之目標操作頻率選擇於15 GHz。單元天線使用槽孔SIW陣列天線設計,且設計易與天線銜接之SIW帶通濾波器以濾除系統內外部之干擾訊號。將整合濾波器之天線單元組成18之陣列天線,以增加波束的指向性且提升天線的增益,達到系統設計規格。 接著使用掃描單元場型量測法 (Scanning Element Pattern Measurement Approach) 以合成出陣列場型,量測每根子天線之增益場型與相位場型進行合成計算,陣列天線波束成型的合成計算與電磁模擬結果相吻合,所計算之陣列天線增益結果為15.6 dBi。此外,為了觀察陣列天線波束的掃描範圍,調整相鄰天線間相位差使得波束的位置改變,相位差改變範圍從−160度至+160度,可觀察波束掃描範圍從+58度到−58度,可涵蓋116度的掃描範圍且掃描至58度所對應之增益約為12.5 dBi。最後為了驗證掃描單元量測法之正確性,設計1對8功率分配器用以饋入陣列天線並進行增益場型量測,所得之量測結果與波束合成計算及電磁模擬場型結果相符合。

並列摘要


In this thesis, the phased array antennas applicable for fifth generation (5G) mobile systems are designed and implemented. The substrate-integrated waveguide (SIW) structures are chosen for circuit implementation. Based on the 5G radio prototype implemented by Ericsson, the target operation frequency of the proposed phased array antennas is selected at 15 GHz. The classical slotted SIW array is utilized as the antenna element. Moreover, to filter out the interfering signals in the frontend, the SIW bandpass filter (BPF) are easy to be integrated with antenna is designed. In order to meet the system specification, the eight antenna elements integrated with BPFs constitute the 1×8 array antenna to enhance the beam directivity and increase the antenna gain. The scanning element array pattern measurement approach is adopted to synthesize the array pattern. By individually measuring the gain and phase patterns of each element among the array, the array gain pattern can be synthesized by calculation. The synthesis results agree quite well with the EM simulated results while the synthesized peak array gain is around 15.6 dBi. Besides, to observe the beam scanning range, the phase difference between adjacent elements could be adjusted from −160o to +160o and the corresponding beam directions are scanned from +58o to −58o, respectively. The beam scanning range convers around 116o and the related gains at scanning edge (58o) are around 12.5 dBi. Finally, to verify the synthesis results, a 1 to 8 power divider is used to feed the array antenna and the gain patter is measured. The obtained measured result shows good agreement with both synthesis and EM simulated results.

參考文獻


[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, J.C. Zhang, “What will 5G be?,” IEEE J. Sel. Areas Commun., vol. 32, pp. 1065-1082, June 2014.
[2] T. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!,” IEEE Access, vol. 1, pp. 335-349, May 2013.
[3] S. Torres, “A demonstration of adaptive weather-surveillance capabilities on the National Weather Radar Testbed phased-array radar,” Proc. IEEE, Int. Symp. Phased Array Syst. Technol., pp. 1-4, 2013.
[4] K. H. Lai, I. D. Longstaff and G. D. Callaghan, “Super-fast scanning technique for phased array weather radar applications,” Inst. Elect, Eng. Proc. Radar, Sonar Navig., vol. 151, no. 5, pp. 271-279, 2004.
[5] B.-H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with 50 beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 11, pp. 2823–2832, Nov. 2014.

延伸閱讀