透過您的圖書館登入
IP:3.133.87.156
  • 學位論文

鐵-8鋁-15錳-1矽-0.4碳合金相變化

The Phase Transformations of the Fe-8Al-15Mn-1Si-0.4C Alloy

指導教授 : 趙志燁

摘要


本文主要係利用光學顯微鏡(OM)與穿透式電子顯微鏡(TEM)等分析技術,針對鐵-8鋁-15錳-1矽-0.4碳合金相變化進行研究分析。主要研究結果顯示,合金經1100℃持溫30分鐘之固溶處理後,其顯微結構主要為(沃斯田鐵相+肥粒鐵相),其中沃斯田鐵相區為單相結構,肥粒鐵相區為(α+B2+ DO3)之混合區域,而(α+B2+DO3)是高溫淬火過程中,經由連續規則化所產生。 合金經200℃~650℃不等時間之時效處理後,沃斯田鐵區並無觀察到κ相析出,其肥粒鐵相區有針狀L12結構析出物產生,其中DO3相沿<100>方向成長。當時效溫度提高至750℃,γ相雙晶處會有具L12結構析出物產生。因此合金經200℃~750℃其相變化過程為(α+DO3+B2+針狀L12結構析出物)→(α+顆粒狀DO3+針狀L12結構析出物)→(α+方塊狀DO3+針狀L12結構析出物) →(α+ B2)。此外在時效過程中,在α/γ晶界上觀察到α相會沿著[012] α方向成長。

並列摘要


The main purposes of the present studies are to investigate the phase transformations of the Fe-8Al-15Mn-1Si-0.4C alloy by using optical microscopy (OM) and transmission electron microscopy (TEM). The microstructure of the alloy after being solution heat-treated at 1100℃ for 30 min and then quenched. It reveals a (γ+α) phase microstructure. The austenite matrix was single-phase and the ferrite matrix were (α+B2+DO3) phases microstructure, where the (α+B2+DO3) were formed by a continuous ordering transition during quenching. When the as-quenched specimen aged at the temperature from the 200℃~650℃ for longer times, no evidence of the (Fe,Mn)3AlCx carbides formed on the austenite matrix could be detected. Moreover, the needle-like precipitates has L12-type structure occurred as well as the DO3 precipitates grew along <100> directions on the ferrite matrix on the α matrix. When the aging temperature was increased to 750℃ for shorter times, a needle-like L12-type precipitates occurred on the twin boundary of austenite matrix. With increasing the aging temperatures from 200℃ to 750℃, the phase transformation sequence occurring within the α matrix is found to be (α+DO3+B2+needle-like L12-phase)→(α+ spherical DO3+ needle-like L12- phase)→(α+ quadrate DO3+ needle-like L12-phase) →(α+ B2). Furthermore, during aging, the ferrite grains grew along <100> directions to the austenite matrix on the γ/α grain boundary.

參考文獻


43.王柏村、趙志燁、吳建德,1999,「應用實驗模態分析於高爾夫球頭素料之材料性質測定」,中華民國振動與噪音工程第七屆學術研討會,第八卷第二期,第241-256頁。
44.趙志燁,2000,「鐵鋁錳合金鋼應用在造粒系統之開發研究」,國科會專題研究報告,NSC 89-2216-E-020-001。
3.Chao, C. Y., C. N. Hwang, and T. F. Liu 1993b, “Grain Boundary Precipitation in an Fe-8.0 Al-31.5 Mn-1.05 C Alloy,” Scripta Metallurgical Vol.28, pp.263-268.
5.Tjong, S. C., and C. S. Wu 1986, “The Microstructure and Stress Corrosion Creaking Behaviour of Precipitation-Hardened Fe-8.7Al-29Mn-1.04C Alloy in 20%NaCl Solution,” Materials Science and Engineering 203-211.
6.Kayak, G. L. 1969, “Fe-Mn-Al Precipitation-Hardening Austenitic Alloys,” Metal Science and Heat Treatment Vol.2, pp.95-97.

被引用紀錄


李昇儒(2010)。鐵-20錳-6鋁-4鎳-3鉻-0.5碳合金相變化〔碩士論文,國立屏東科技大學〕。華藝線上圖書館。https://doi.org/10.6346/NPUST.2010.00228
林永順(2009)。鐵-4鋁-3鉻-6鎳-16錳-0.2碳合金相變化〔碩士論文,國立屏東科技大學〕。華藝線上圖書館。https://doi.org/10.6346/NPUST.2009.00188
吳亭瑩(2010)。熱電致冷器熱變形之實驗與數值探討〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1901201111410656

延伸閱讀