透過您的圖書館登入
IP:3.18.109.154
  • 學位論文

雙溫區微域加熱聚合酶連鎖反應晶片之設計

Design of Two-Heater Micro-Domain Heating Chip for PCR

指導教授 : 陳志堅

摘要


本研究目的是研發在晶片上的微域加熱器。利用軟體CFD-RC模擬設計微域加熱晶片,晶片上設計兩個不同溫度的恆溫區,晶片底部佈置兩組微加熱器,探討兩加熱溫區距離不同,和配合聚合酶連鎖反應(PCR)使用時溫區溫度設定條件不同而中間溫區設置材料不同。在實驗部分也配合聚合酶連鎖反應的反應溫區需要三種不同的反應溫區,利用微機電製程,在晶片上設計兩個不同溫度的恆溫區,晶片底部佈置兩組微加熱器,構成三溫區的恆溫微域加熱區域。以微機電製程方法製作晶片,微域加熱晶片可分成三個部份,包含PDMS流道和玻璃之微域加熱晶片本體、LabVIEW溫度控制程式。兩個微機電製程的加熱裝置形成不同溫度的恆溫區時,利用水冷流道的效果,使晶片表面呈現三個不同溫度的微域恆溫區。為了抑制PDMS流道中氣泡的產生,流道表面以體積比為20%的Tween 20處理,可以大大降低氣泡在流道中形成。

並列摘要


The goal of this research is to develop micro-domain heaters on chips. Using software CFD-RC to simulate the thermal fields of micro-domain heating chip, there are two different constant temperature regions designed on the chip, and the two micro heaters are fabricated at the bottom of the chip. The purpose of this research is to develop micro-domain heaters on chips for applying in polymerase chain reaction. Using MEMS process we fabricate two different heaters on the chip. Three different constant temperature regions are created by means of heat conduction mechanism. In the experiment, the micro-domain heating system mainly consists of three parts: PDMS channel, micro-domain heating chip and LabVIEW control module. The LabVIEW control module is used to manage the temperature of micro-domain heating. By utilizing the waterwall cooling effect, three different temperatures of micro-domain isothermal regions are observed. The formation of air bubbles within the device is suppressed by treating the flow channel with 20% (v/v) Tween 20.

參考文獻


[3] Lao, A. I. K., Lee, T. M. H., Hsing, I. M., and Ip, N. Y., 2000, “Precise temperature control of microfluidic chamber for gas and liquid phase reactions,” Sensors and Actuators A: Physical, Vol. 84, No. 1-2, pp. 11-17.
[4] Losey, M. W., Jackman, R. J., and Firebaugh, S. L., 2002, “Design and fabrication of microfluidic devices for multiphase mixing and reaction,” Journal of Microelectromechanical Systems, Vol. 11, No. 6, pp. 709-717.
[5] Felbel, J., Bieber, I., Pipper, J., and Kohler, J. M., 2004, “Investigations on the compatibility of chemically oxidized silicon (SiOx)-surfaces for applications towards chip-based polymerase chain reaction,” Journal of Chemical Engineering, Vol. 101, No. 1-3, pp. 333-338.
[6] El-Ali, J., Perch-Nielsen, I. R., Poulsen, C. R., Bang, D. D., Telleman, P., and Wolff, A., 2004, “Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor,” Sensors and Actuators A: Physical, Vol. 110, No. 1-3, pp. 3-10.
[8] Yeung, S. S. W., Thomas, M. H., Hsing, I. M., 2008, “Electrochemistry-based real-time PCR on a microchip,” Analytical Chemistry, Vol. 80, No. 2, pp. 363-368.

延伸閱讀