透過您的圖書館登入
IP:3.15.197.123
  • 學位論文

發電機引擎使用添加丁醇/丙酮廢食用油生質柴油排氣多環芳香烴化合物特性

Emissions of polycyclic aromatic hydrocarbons from a diesel engine generator fueled with waste cooking oil-based biodiesel blended with butanol and acetone

指導教授 : 陳瑞仁
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


為瞭解柴油發電機引擎不同負載下使用傳統石化柴油 (fossil diesel,以D100表示) 中分別添加丙酮 (acetone,以A表示)、含水丙酮 (water-containing acetone,以A' 表示)、丁醇 (butanol,以B表示)、含水丁醇 (water-containing butanol ,以 B' 表示)、異丙醇(isopropyl alcohol,以I表示)及廢食用油轉製之生質柴油 (waste cooking oil-based biodiesels,以W表示)之混合油品時排氣多環芳香烴化合物 (polycyclic aromatic hydrocarbons,簡稱 PAHs )特性,本研究探討發電機引擎1.5 kW及3.0 kW負載下,使用D76W20A3I1 (以A3表示)、D76W20A'3I1 (以A'3表示)、D50W20B30 (以B30表示)、D50W20B'30 (以B'30表示)、D46W20B30A3I1 (以B30A3表示)及D46W20B'30A'3I1 (以B'30A'3表示) 等各混合生質柴油時對排氣PAHs之影響。   研究結果顯示:發電機引擎1.5 kW及3.0 kW負載下使用 B30、B'30、A3、A'3、B30A3 及 B'30A'3 等各混合油品時排氣Total-PAHs濃度均以LMW-PAHs為主(平均76.5 %) ,MMW-PAHs次之、HMW-PAHs僅極小比例 (平均1.54% );與PAHs不同,其排氣Total-BaPeq濃度均以HMW-BaPeq 為主(平均60 % ),MMW及LMW-BaPeq 濃度則相當(各約佔20 %)。與低負載( 1.5 kW)相較,無論使用B30、B'30、A3、A'3、B30A3 及 B'30A'3等何種油品,在較高負載( 3.0 kW)下因發電機引擎單位時間耗油量(fuel consumption,簡稱 FC)較高,致同一油品在3.0 kW下燃燒時其排氣Total-PAHs濃度雖均較低負載時高,然同一油品在3.0 kW下燃燒時其排氣Total-BaPeq濃度則均較1.5 kW時低。與W20相較,3.0 kW負載下使用B30、B'30、A3、A'3、B30A3及B'30A'3等各油品時其排氣Total-PAHs及Total-BaPeq濃度均有減量,其削減率之範圍分別為51.1 ~ 76.8及2.45 ~ 54.5 %,平均削減率分別為65及34 %。與添加無水丁醇( B30 )相較,1.5 kW及3.0 kW兩負載下使用添加有含水( 5 %)丁醇之B'30時其排氣Total-PAHs及Total-BaPeq 濃度均有進一步減量;與A3相較,兩負載下使用A'3時僅1.5 kW時排氣Total-PAHs濃度有些微減量及3.0 kW時排氣Total-BaPeq濃度有進一步減量;與B30A3相較,1.5 kW及3.0 kW兩負載下使用B'30A'3時其排氣Total-PAHs及Total-BaPeq濃度亦均有進一步減量。與無水丁醇及無水丙酮相較,使用添加含水丁醇( B'30 )時,其排氣Total-PAHs及Total-BaPeq濃度之減量效益較添加含水丙酮( A'3 )時高。   發電機引擎兩負載下使用B30、B'30、A3、A'3、B30A3及B'30A'3等各油品時其排氣Total-PAHs濃度中fraction最多之前三種congener依序分別為Nap (佔45.5 % ) > PA (17.3 % ) > FL ( 11.7 % );而排氣Total-BaPeq濃度中fraction最多之前三種congener則依序分別為:BaP ( 33.5 % ) > DBA ( 13.4 % ) > BbF ( 7.71 % )。與W20相較,兩負載下使用各油品時其排氣Total-PAHs及Total-BaPeq 濃度中減量最多之congener均為Nap。與 W20 相較,3.0 kW負載下使用B30、B'30、A3、A'3、B30A3及B'30A'3等各油品時其單位時間耗油量FC 及單位功率耗油量 ( Brake specific fuel consumption,簡稱 BSFC )雖稍增加 (FC 平均增加13 %;BSFC平均增加14 %);然若考量柴油引擎排氣( Diesel engine exhausts,簡稱 DEEs) 對環境及人體健康之影響,使用添加丁醇/丙酮(無論是否含水)之生質柴油時可有效降低DEEs中Total-PAHs (平均65 %) 及 Total-BaPeq 濃度(平均34 %),顯示丁醇及丙酮是可行之潔淨替代能源之一。

並列摘要


This study investigates the emission characteristics of polycyclic aromatic hydrocarbons (PAHs) from the exhaust of a diesel engine generator fueled with traditional fossil diesel (D100) and blends with the additions of acetone (A), water-containing acetone (A'), isopropyl alcohol (I), butanol (B), water-containing butanol (B'), or waste cooking oil-based biodiesel (W). The fuel blends, B30W20D50 (abbrev. as B30), B'30W20D50 (abbrev. as B'30), A3I1W20D76 (abbrev. as A3), A'3I1W20D76 (as A'3), B30A3I1W20D46 (as B30A3), and B'30A'3I1W20D46 (as B'30A'3), were prepared and tested at 1.5 and 3.0 kW loads of the diesel engine generator.   The results show that the Total-PAH mass concentrations were dominated by LMW-PAHs (76.5% in average), followed by MMW- and LMW-PAHs (very small contribution, 1.54%) using all B30, B'30, A3, A'3, B30A3, and B'30A'3. Nevertheless, the contributions of Total-BaPeq from by HMW- MMW-, and LMW- PAHs were 60%, 20%, and 20%, respectively. The higher engine load operation at 3.0 kW provided higher fuel consumption (FC) and led to higher mass concentrations of the Total-PAHs than that at 1.5 kW for all kind of fuel blends. However, the level of Total-BaPeq emitted at 3.0 kW was lower than that at 1.5 kW. In comparison with W20, the Total-PAH and BaPeq emissions were reduced by 51.1–76.5% (65% in average) and 2.45–54.5% (34% in average), respectively, for using B30, B'30, A3, A'3, B30A3, and B'30A'3. The significant benefit of water content in blends was supported by that the Total-PAH and -BaPeq concentrations were reduced when replacing dehydrous B30 with hydrous B'30. Additionally, the slight reduction of Total-PAHs emission was found using A'3 versus using A3 at 1.5 kW and the Total-BaPeq emission was further reduced at 3.0 kW. In comparison with B30A3, both of Total-PAH and -BaPeq emissions could be inhibited by using B'30A'3. In comparison to adding pure butanol (B30) or dehydrous acetone (A3), more reductions of Total-PAH and -BaPeq emissions were achieved by adding hydrous butanol (B'30) than by adding hydrous acetone (A'3).   The top three dominant species on PAH mass concentration were Nap (45.5%) > PA (17.3%) > FL (11.7%), while the BaPeq were dominated by BaP (33.5%) > DBA (13.4 %) > BbF (7.71 %), despite the difference of fuel blends. In comparison with W20, The species with the most mass reduction fraction was Nap, when the engine was fueled with other fuel additive blends. Additionally, the FC and brake specific fuel consumption (BSFC) slightly increased by using B30, B'30, A3, A'3, B30A3, and B'30A'3 versus by using W20. For the considerations of environmental impact and human health by diesel engine exhausts (DEEs), using pure/hydrous butanol and acetone could effectively reduce 65% of Total-PAH and 34% of Total-BaPeq emissions, indicating that the butanol and acetone are two of promising alternatives of diesel engine generator fuels.

參考文獻


參考文獻
Andrews, GE, SM Abdelhalim, and PT Williams. 1996. "Pyrosynthesis of PAH in a modern IDI diesel engine." SAE Technical Paper.
Andrews, Gordon E, Suhair M Abdelhalim, and Hu Li. 1999. "The influence of lubricating oil age on oil quality and emissions from IDI passenger car diesels." SAE Technical Paper.
Agarwal, Avinash Kumar, and LM Das. 2001. 'Biodiesel development and characterization for use as a fuel in compression ignition engines', Journal of Engineering for Gas Turbines and Power,Vol 123, No.2, pp 440-47.
Abrantes, Rui, João V de Assunção, and Célia R Pesquero. 2004. 'Emission of polycyclic aromatic hydrocarbons from light-duty diesel vehicles exhaust', Atmospheric Environment,Vol 38, No.11, pp 1631-40.

延伸閱讀