透過您的圖書館登入
IP:18.119.133.228
  • 學位論文

銅基薄膜經雷射去濕後表面電漿共振光學特性

Surface resonant properties of Cu-based film by dewetting process

指導教授 : 林鉉凱
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本實驗使用高真空濺鍍系統沉積10 nm與40 nm純銅與不同比例銅鋯金屬玻璃薄膜,經1064 nm雷射去濕,表面形成金屬顆粒,探討經雷射處理不同膜厚與鋯元素添加之薄膜對於粒徑與吸收光譜有何影響。結果顯示兩種厚度薄膜皆隨著瓦數的提升與掃描速度的降低,粒徑有下降的趨勢,並可透過控制不同雷射條件製造出不同尺寸顆粒,粒徑範圍為43 nm~1 m,Cu80Zr20 10 nm於參數300 kHz-10 W-50 mm/s可製造出最小粒徑43 nm之高密度與高均勻度的金屬奈米顆粒,適量鋯元素的添加將有效提升吸收峰共振帶寬,10 nm Cu80Zr20經100 kHz-2 W-50 mms去濕後,整體帶寬比10 nm Cu提升70 nm,此結果將利於未來太陽能產業、生物傳感器等研究。

並列摘要


In this study, Cu and CuZr films with different thicknesses (10 nm and 40 nm) are deposited by using a high vacuum sputtering system. These films are dewetted by 1064 nm laser irradiation in order to form some metal particles on the surface. The results show that the particle size decreases with an increase of laser power or a decrease of scanning speed and the particle size ranges are from 43 nm to 1 μm. High density and uniformity nanoparticles in the 10 nm Cu80Zr20 film can be obtained through laser dewetting process and the minimum particle size is around 43 nm operating at 300 kHz-10 W-50 mm/s condition. The addition of zirconium will effectively increase the absorption peak resonance bandwidth. Furthermore, for the laser-dewetted film processed using a power of 2 W, a repetition rate of 100 kHz and a scan speed of 50 mm/s, the bandwidth of Cu80Zr20 (150 nm) is larger than that of Cu (220 nm). The results will benefit in the solar energy industry and biosensors.

參考文獻


[1]W. Ling, T. Giessel, K. Thürmer, R. Hwang, N. Bartelt, and K. McCarty, 2004, "Crucial role of substrate steps in de-wetting of crystalline thin films," Surface science, vol. 570, pp. L297-L303.
[2]J. Petersen and S. Mayr, 2008, "Dewetting of Ni and NiAg solid thin films and formation of nanowires on ripple patterned substrates," Journal of Applied Physics, vol. 103, p. 023520.
[3]G. Capellini, G. Ciasca, M. De Seta, A. Notargiacomo, F. Evangelisti, and M. Nardone, 2009, "Agglomeration process in thin silicon-, strained silicon-, and silicon germanium-on-insulator substrates," Journal of applied physics, vol. 105, p. 093525.
[4]E. Jiran and C. Thompson, 1990, "Capillary instabilities in thin films," Journal of electronic materials, vol. 19, pp. 1153-1160.
[5]D. Srolovitz and S. Safran, 1986, "Capillary instabilities in thin films. I. Energetics," Journal of Applied Physics, vol. 60, pp. 247-254.

延伸閱讀