透過您的圖書館登入
IP:3.141.30.162
  • 學位論文

表面磁場的排列對低溫常壓電漿處理銅基板表面性能的影響

The Effect of Magnetic Field Arrangement on the Surface Properties of Copper Substrates Treated with Low Temperature of Atmospheric Pressure Plasma

指導教授 : 陳晧隆
本文將於2026/08/03開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


現代對精密零組件的組裝精度及材料表面的品質要求提升,在精密拋光技術層面的需求也面臨瓶頸。目前已發展出許多拋光技術下,電漿拋光作為一種新的拋光技術,是精密加工領域中一種新的發展趨勢。 本研究探討表面磁場的排列,對低溫常壓電漿處理銅箔材料表面粗糙度的影響。電漿功率固定為50 W,反應氣體為氮氣(N2),載台掃描速度分別為2、5、10、15及20 mm/s,處理時間為10 min。磁場排列方式有:一般表面磁場排列、海爾貝克陣列、極性交替表面磁場;磁場強度分別為:強力銣鐵硼磁鐵188.8 mT和鐵氧體磁鐵40 mT。使用雷射顯微鏡觀察處理前後銅箔基板其表面粗糙度變化。結果顯示,銅箔基板未使用磁場輔助低溫常壓電漿處理後,在載台掃描速度為2 mm/s時,表面粗糙度改善率約為17.6 %,當載台掃描速度為20 mm/s時,表面粗糙度改善率約為5.5 %。但是使用海爾貝克陣列表面磁場的排列,可以使表面粗糙度的改善率效果最好,在載台掃描速度為2 mm/s時,表面粗糙度改善率約為42.6 %,當載台掃描速度為20 mm/s時,表面粗糙度改善率約為29.3 %。在各種處理條件下,隨載台掃描速度增加,表面粗糙度改善率有逐漸下降的情況。

並列摘要


Modern day requirements for the assembly accuracy and material surface quality of precision components has increased; however, precision polishing technology is facing bottlenecks. At present, many polishing technologies have been developed, including plasma polishing, which is a new trend of development in the field of precision machining. This study explores the effects that different surface magnetic field arrangements have on the surface roughness of the copper foil subjected to plasma processing under low-temperature atmospheric pressure conditions. The power parameter was fixed at 50 W and nitrogen (N2) was used as the reaction gas. The stage scanning rates were set at 2, 5, 10, 15 and 20 mm/s respectively, and the processing time was 10 min. The magnetic field arrangements used were: normal surface magnetic field, Halbach array, and alternating polarity. The magnetic field strengths were: 188.8 mT rubidium iron boron strong magnet, and 40 mT ferrite magnet. A laser microscope was used to observe the changes in the surface roughness of the copper foil substrate before and after the treatment. The results show that without using magnetic field-assisted low-temperature atmospheric pressure plasma treatment on the copper foil substrate, when the stage scanning rate was set at 2 mm/s, the surface roughness improved by about 17.6%. When the scanning rate was at 20 mm/s, the surface roughness improved by about 5.5%. However, when using the Halbach array for the surface magnetic field arrangement, the greatest improvements to surface roughness were achieved. With a scanning rate of 2 mm/s, the surface roughness improved by about 42.6 %. When the scanning rate was 20 mm/s, the surface roughness improved by about 29.3 %. Under the various processing parameters, as the scanning rate was raised, the improvement rate of surface roughness gradually declined.

參考文獻


[1] Zebin Xia, Fengzhou Fang, Eamonn Ahearne, Moran Tao, Advances in polishing of optical freeform surfaces: A review, Journal of Materials Processing Technology, vol. 286, 2020.
[2] 劉俊葳、張高德、翁志強、陳稺榤、李祐昇、伍必霈,高精度光學透鏡電漿拋光技術,先進製造技術專輯,第438期,第52-59頁,2019。
[3] 劉衛國、田園,等離子體抛光對表面粗糙度的影響,西安工業大學學報,第30卷,第2期,第108-111頁,2010。
[4] 何政昌,常壓電漿技術之研究,碩士論文,國立成功大學化學工程研究所,台南、台灣,2002。
[5] 庾莉萍、白杉,我國銅材的生產、技術與應用,有色設備,第3期,第34-38頁,2004。

延伸閱讀