透過您的圖書館登入
IP:3.14.70.203
  • 學位論文

不同前處理條件無電鍍鎳碳化鈦對真空感應熔融鎳基合金顯微組織與硬度之影響

The Effects of Different Pretreatment Electroless-Nickel-Plating TiC on the Microstructure and Hardness of the Vacuum Induction Melting

指導教授 : 周兆民

摘要


真空感應熔融(VIM)與硬面合金是目前廣泛被運用的料管製程材料,然而以VIM方式製備硬面合金並進行研究的相關文獻卻很少。因此,本實驗利用真空感應熔融方式製備無電鍍鎳碳化鈦強化鎳基合金/AISI4140鋼雙金屬,以鎳基合金為基材,並添加不同前處理之無電鍍鎳之碳化鈦粉末與鎳基合金粉末混合,再以4140鋼作為坩堝。其中分別無電鍍鎳碳化鈦添加量為1、5及10wt%,加熱溫度1200 oC,製作無電鍍鎳碳化鈦強化鎳基合金。進行顯微組織觀察及硬度測試,探討不同前處理條件對無電鍍鎳碳化鈦強化鎳基合金的顯微組織與硬度之影響。 由XRD、EDS、SEM與EPMA分析實驗結果可知,無電鍍鎳碳化鈦強化鎳基合金顯微組織以γ-Ni、Ni3B、Ni3Si、Ni31Si12、CrB、Cr7C3、Cr23C6、TiC為主。 無電鍍鎳的方式可以有效的改善碳化鈦與鎳基合金之潤濕性。在無電鍍鎳過程中,隨著硫酸鎳的含量增加有助提高粉末表面完整包覆,在敏化過程中碳化鈦顆粒表面呈現階梯狀結構,此結構可提高鎳離子吸附成核,其中以前處理N為16ml鹽酸和4g氯化亞錫最佳。 在縱向硬度測試中,硬度值隨著無電鍍鎳碳化鈦添加量增加,碳化鈦面積分率呈現上升的趨勢,故硬度值亦隨之增加。在1wt%添加量中,可以觀察到碳化鈦硬化相較少以外,且還會受到鐵原子分佈影響,即大量的鐵原子往鎳基合金層流動不易受到阻礙,導致試片整體硬度降低;而在無電鍍鎳碳化鈦添加量10wt%中,鐵流動則被碳化鈦阻礙,故無電鍍鎳碳化鈦添加量10wt%,整體硬度有上升得趨勢。

並列摘要


Vacuum induction melting (VIM) and hardfacing alloys are currently widely used processes and materials, but to fabricate hardfacing alloy by using VIM and related literature are few. In this study, electroless nickel plated TiC reinforced nickel-based alloy/AISI 4140 steel were produced by VIM. Using Ni-based powders as base material and adding TiC with different pretreatment of electroless nikel plating 1 , 5 wt% , 10 wt% repectively were poured into the 4140 steel crucible, and heated to 1200 oC to make electroless nickel plated TiC renforced Nickel-based alloy/AISI 4140 steel. As revealed by XRD、SEM、EDS and EPMA analysis, we confirmed that the electroless nickel-plated titanium carbide reinforced nickel based alloy microstructure consists mainly of γ-Ni, Ni3B, Ni3Si, Ni31Si12, CrB, Cr7C3, Cr23C6, TiC. The electroless nickel plating can effectively improve the wettability between titanium carbide and nickel-based alloy. In the electroless nickel plating process, as increase of nickel sulfate content will improve the surface coverage of the powder coating. In the sensitization process the titanium carbide particles appear ladder-like structure, this structure can improve the adsorption of nickel ions and the resulting nucleation. Above all, pre-pretreatment condition N with 16ml hydrochloric acid and 4g chloride, anhydrous can have the best result. In the result of hardness test, the hardness increases with the addition of electroless nickel plating titanium carbide particles, and its area fraction also shows an upward trend. In the case of 1 wt% addition, titanium carbide-caused hardening can be observed In addition, the iron atoms are affected by the distribution of iron atoms, large flaw of iron atoms to the nickel-based alloy layer was not hindered, resulting in the decrease in the hardness of the test piece. In the case of 10 wt% electroless nickel plated titanium carbide iron flow was blocked by titanium carbide. Thus, in the case of 10 wt% electroless Ni plated titanium carbide, the overall hardness increase.

參考文獻


[49]陳志宏,以軟性基板製備鎳基薄膜式超級電容電極,義守大學材料科學與工程學系碩士論文,2015年。
[89] 陳政文,真空感應熔融添加無電鍍鎳碳化鈦強化鎳基合金顯微組織、磨耗行為影響之研究,義守大學材料與工程學系碩士論文,2015年。
[6]杜福安,“Feed tube structure of injection molding machine”, C. N. Parent 201776889, Mar.2011.
[7]X.H. Wang, M. Zhang, X. M. Liu, S. Y. Qu and Z. D. Zou, “Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding”, Surface and Coatings Technology, vol.202, 2008, pp.3600-3606.
[8]Z. K. Fu, H. H. Ding, W. J. Wang, Q. Y. Liu, J. Guo and M. H. Zhu, “Investigation on microstructure and wear characteristic of laser claddingFe-based alloy on wheel/rail materials”, Wear, vol.330-331, 2015, pp.592-599.

延伸閱讀