透過您的圖書館登入
IP:3.144.244.44
  • 學位論文

真空感應熔融添加無電鍍鎳碳化鈦強化鎳基合金顯微組織、磨耗行為影響之研究

The Effect of Microstructure and Wear Behavior of Addition Electroless Plating TiC Reinforced Nickel-based Alloy by Vacuum Induction Melting

指導教授 : 周兆民

摘要


本實驗是利用真空感應熔融方式製作無電鍍鎳碳化鈦強化鎳基合金/4140鋼雙金屬,以鎳基合金為基材再添加無電鍍鎳之碳化鈦粉末,再以4140鋼作為坩堝。其中無電鍍鎳碳化鈦添加量為5、10和20wt%,加熱溫度1200℃不持溫及持溫5分鐘,製作無電鍍鎳碳化鈦強化鎳基合金/4140鋼雙金屬。磨耗測試是採用球對盤(ball-on-disk)的方式,磨耗條件為滑移速率0.7m/s、磨耗荷重(0.5和1.7kg)及滑移距離(100、500、1000、5000、10000m),探討前述參數無電鍍鎳碳化鈦強化鎳基合金顯微組織及磨耗行為的影響。 實驗結果顯示,無電鍍鎳碳化鈦強化鎳基合金經XRD分析,含有γ-Ni、Ni3Si、Ni31Si12、Ni3B、CrB 、CrC、TiC,且無電鍍鎳所含有極微量的磷並不影響顯微組織。經過無電鍍鎳之碳化鈦可以改善碳化鈦與鎳基合金之潤濕性,而隨著無電鍍鎳碳化鈦添加量的增加,其面積分率也有上升的趨勢,且硬度也隨著無電鍍鎳碳化鈦添增加而增加。由縱向硬度可以發現無電鍍鎳碳化鈦添加量越多,鐵擴散對無電鍍鎳碳化鈦強化鎳基合金硬度影響越小。在磨耗初期100、500m磨耗損失量會隨著無電鍍鎳碳化鈦添加量的增加而減少,且可觀察到硬質相顆粒阻礙刮損路徑;但在磨耗後期1000~10000m會隨著無電鍍鎳碳化鈦添加量增加損失量上升,這是由於無電鍍鎳碳化鈦與鎳基合金接合性不佳,所導致嚴重氧化磨耗造成的三體刮損。在各個磨耗條件下,其磨耗行為基本上的演變,在滑移距離100~500m為刮損和黏著磨耗,之後到1000~10000m為刮損、黏著、輕微氧化、嚴重氧化磨耗(荷重增加易提前發生)及疲勞磨耗。 在無電鍍鎳碳化鈦添加量5wt%、加熱溫度1200℃持溫5分鐘的條件下,磨耗荷重0.5及1.7kg、滑移距離5000~10000m之磨耗損失量的結果,會發現0.5kg有突然上升的趨勢,1.7kg則是趨緩。就磨耗表面的觀察發現,0.5kg在滑移距離5000 ~10000m為嚴重氧化磨耗,而1.7kg則為疲勞磨耗,而在無電鍍鎳碳化鈦添加量上升磨耗損失率也增加的結果下,可知嚴重氧化磨耗為本實驗材料系統使損失量上升的主要因素。

關鍵字

none

並列摘要


Electroless nickel plating TiC reinforced Nickel-based alloy/AISI 4140 steel were produced by Vacuum Induction Melting in this thesis. Add 5、10 and 20wt% electroless nickel plating titanium carbide powder into Nickel-based alloy and poured into the 4140 steel crucible then heated to 1200℃ and hold on for 0 and 5 minutes to made electroless nickel plating TiC reinforced Nickel-based alloy/AISI 4140 steel. Dry sliding wear test of the ball-on-disc experiment, with the wear parameters being a fixed load of 0.5 and 1.7kg, sliding velocities of 0.7 m/s, and sliding distance between 100 and 10,000 m to study .As revealed by XRD the presence of γ-Ni、Ni3Si、Ni31Si12、Ni3B、CrB and TiC phase in electroless nickel plating TiC reinforced Nickel-based alloy. Furthermore, XRD analysis also indicated that a trace amount of phosphorus did not affect the microstructure. After electroless nickel of titanium carbide can improve wettability of between titanium carbide and nickel base alloys. With the electroless nickel plating the amount of titanium carbide increases, which also increased the area fraction and hardness.The distribution of hardness can be found electroless add the electroless nickel plating the amount of titanium carbide increases and the smaller influence on the hardness of the iron diffusion. In the early wear 100,500m wear loss increases with addition of electroless nickel plating titanium carbide with wear loss reducing, and can be found the hard particles prevent abrasive path. But in the late wear 1000~10000m wear loss increases with addition of electroless nickel plating titanium carbide with wear loss increases. Due to the electroless nickel plating titanium carbide and nickel-based alloys bondability is poor, and lead to three-body abrasive. In the sliding distance 100~500m mostly based on the wear behavior of abrasion wear and adhesion wear based, and then in the sliding distance 1000~10000m mostly based on the wear behavior of abrasion wear, adhesion wear, surface fatigue wear and oxidation wear based. The results of Wear loss of Add 5wt% electroless nickel plating titanium carbide, heated to 1200℃ and hold on 5 minutes, fixed load of 0.5 and 1.7kg and sliding distance between 5000 and 10,000 m can be found fixed load of 0.5kg Significantly increased,1.7kg decreased. fixed load of 0.5kg, sliding distance 5000~10000m on the wear behavior of severe oxidation wear. Fixed load of 1.7kg on the wear behavior of surface fatigue wear can be found severe oxidation wear lead to the main factor in the rise of wear loss.

並列關鍵字

none

參考文獻


[5] S. F. Chou and W. Roberson, “High Temperture Corrosion Resistant Bimetallic Cylinders”, US Parent 5019459, May1911.
[6] C. Navas, R. Colaco, J. de Damborenea, and R. Vilar, “Abrasive wear behavior of laser clad and flame sprayed-melted NiCrBSi coatings”, Surface and Coatings Technology, vol.200, 2006, pp.6854-6852.
[7] A. A. Torrance, “Modelling abrasive wear”, Wear, vol.258, 2005, pp.281-293.
[8] F. Otsubo, H. Era, and K. Kishitake, “Structure and phases in nickel-base self-fluxing alloy coating containing high chromium and boron”, Journal of Thermal Spray Technology , vol.9, 2000, pp.107-113.
[9] I. C. Grigorescu, C. Di Rauso, R. Drira-Halouani, B. Lavelle, R. Di Giampaolo, and J. Lira, “Phase characterization in Ni alloy-hard carbide composites for fused coatings”, Surface and Coatings Technology, vol.76-77, 1995, pp.494-498.

被引用紀錄


許竣享(2017)。不同前處理條件無電鍍鎳碳化鈦對真空感應熔融鎳基合金顯微組織與硬度之影響〔碩士論文,義守大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0074-0507201719023700

延伸閱讀