透過您的圖書館登入
IP:3.137.173.168
  • 學位論文

低成本高效率矽基太陽能電池設計與分析

Design and Analysis of the Low-Cost and High-Efficiency Si-based Solar Cells

指導教授 : 黃榮生

摘要


目前市面上最普遍的矽晶轉換效率為15-25%,而效率最高的是化合物串疊太陽能電池46%,但成本也高。[1]本論文為了成本考量,所以在本質層摻雜β-FeSi2和BaSi2這兩種材料,藉由材料搭配p-i-n結構的矽基太陽能電池來模擬分析,來探討同質結構與異質結構有無金屬反射層,對於這四種結構進行效率分析比較。本文透過產生速率來計算漂移電流密度,利用載子傳輸方程式來計算擴散電流密度,最後再結合漂移電流密度及擴散電流密度算出的短路電流與開與電壓,畫出J-V特性曲線圖來分析轉換效率。通過改變本質層的厚度與摻雜濃度的變化,來比較出最佳化的結果。在同質無反射層的結構中,Si、BaSi2和β-FeSi2的轉換效率分別為16.4%、13.36%和2.36%。同質有反射層的結構中,Si、BaSi2和β-FeSi2的轉換效率分別為17.43%、13.61%和2.34%。在異質無反射層的結構中,BaSi2和β-FeSi2的轉換效率分別為21.05%和39.55%。異質有反射層的結構中,BaSi2和β-FeSi2的轉換效率分別為22.57%和41.55%。

並列摘要


At present, the most common silicon conversion efficiency on the market is 15-25%, and the compound cascade solar cell with the highest efficiency is 46%, but the cost is also high. [1] In this paper, in order to consider the cost, we doped in the essential layer β-FeSi2 and BaSi2, the two materials, are simulated and analyzed by the silicon-based solar cell with p-i-n structure, to explore whether there is a metal reflector in the homogeneous structure and heterostructure, and to analyze and compare the efficiency of these four structures. In this paper, the drift current density is calculated through the generation rate, and the diffusion current density is calculated by using the carrier transmission equation. Finally, combined with the short-circuit current and on-off voltage calculated by the drift current density and diffusion current density, the J-V characteristic curve is drawn to analyze the conversion efficiency. By changing the thickness of the essential layer and the doping concentration, the optimal results are compared. In the homogeneous structure without reflective layer, the conversion efficiency of Si, BaSi2 and β-FeSi2 are 16.4%, 13.36% and 2.36% respectively. The conversion efficiency of Si, BaSi2 and β-FeSi2 is 17.43%, 13.61% and 2.34% respectively. In the heterogeneous structure without reflector, the conversion efficiency of BaSi2 and β-FeSi2 are 21.05% and 39.55% respectively. In the heterogeneous structure with reflector, the conversion efficiency of BaSi2 and β-FeSi2 are 22.57% and 41.55% respectively.

參考文獻


[1]Daisy Chuang(2019年4月17日), 太陽光電技術百家爭鳴,提高轉換效率為一大發展重點, 科技新報.取自https://technews.tw/2019/02/11/improve-solar-energy-efficiency/
[2]Xuan Li(2022), Research Progress and Development Trend of Solar Cells, Engineering Technology Research ,Volume 4 Issue 3.
[3]Shaowen CAO, Guoqing ZHOU, Qilin CAI, Qing YE, Haoqiang PANG, Xi WU. A review of solar cells: Materials, policy-driven mechanisms and application prospects[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1847-1858.
[4]YAN Dazhou, LIU Yanmin, WAN Ye, et al. Effect and impact of crystalline silicon solar energy in the "double carbon" economy[J]. China Nonferrous Metallurgy,2021,50(5):1-6.
[5]China Photovoltaic Society. Report on 2020 China PV technology development—Research progress of crystalline silicon solar cells (1)[J]. Solar Energy,2020(10):5-12.

延伸閱讀