透過您的圖書館登入
IP:3.137.157.45
  • 學位論文

線基微流體應用在生物樣品預濃縮之研究

Thread-based Microfluidics Applied on the Pre-concentration of Bio-Sample

指導教授 : 林志龍

摘要


微米流道分析器應用毛細效應正迅速地發展,它提供一個低成本,操作簡單,與迅速診斷機制,進而提升定點照顧測試。離子濃度極化理論已經廣泛應用於微流體紙基分析器,但是微流體線基分析器上的應用或分析卻很少。在本論文中,我們成功地製作簡易 μTADs 來驗證電滲流(EOF)效應。接著,我們在滴覆 Nafion 於線基上,產生離子濃度極化(ICP)現象,進而產生預濃縮效果。最後,當施加電壓 80 V、100 V 和 130 V,EOF 的速度測量得為 60 μms-1, 76.9 μms-1, and 87.0 μms-1,而 zeta 電位透過計算分別為-52.94 mV、-54.28 mV 和-47.24 mV。此外,螢光的濃縮的強度和面積也是隨著施加一定電壓的時間增加而增加,實驗結果顯示線基微流體分析器具有預濃縮的效率。值得注意是,當施加 130V 電壓時,在 60 秒內就可以得到不錯的濃縮效率。

並列摘要


Microfluidic analytical devices (μTADs) using capillary effect have been rapidly developed to enable low-cost, easy operation, and rapid diagnostics for performing point of care testing (POCT). Ion concentration polarization (ICP) has been widely applied in microfluidic paper-based analytic devices. However, that is still rare analyzed in microfluidic thread-based analytic devices (μTADs). In this thesis, we have successfully fabricated easy μTADs to verify the electroosmotic flow (EOF). Also, we dropped Nafion film onto thread to generate ICP effect to produce prconcentration effect. Finally, the EOF velocities are experimentally measured as 60 μms-1, 76.9 μms-1, and 87.0 μms-1 , and the zeta poetical of thread were then calculated to be -52.94 mV, -54.28 mV, and -47.24 mV corresponding for the applied voltages of 80 V, 100 V, and 130 V, respectively. Furthermore, the concentrated intensity and area of the fluorescence can be increased with the increasing time. The experimental results showed that the μTADs displayed preconcentration efficient. Notably, a better concentration efficient was achieved in 60 seconds as the applied voltage of 130 V.

參考文獻


[1]. Li M. and Anand R. K., Recent advancements in ion concentration polarization, Analyst, 141, 3496-3510, 2016.
[2]. Majid Gholinejad M., Ali Jabari Moghadam A. J., Dinh-Tuan Phan D.-T. , Miri A. K., and Shaegh S. A. M.,Design and application of ion concentration polarization for preconcentrating charged analyte, Physics of Fluids, 33, 051301, 2021.
[3]. Ko, S. H., Song, Y.-A., Kim, S. J., Kim, M., Han, J., & Kang, K. H., Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization, Lab on a Chip, 12(21), 4472, 2012.
[4]. Kim J., Cho I., Lee H. & Kim S. J., Ion Concentration Polarization by Bifurcated Current Path, Scientific Reports, 7, 5091, 2017.
[5]. Kwak R. ,Kang J. Y. and Kim T. S. ,Spatiotemporally Defining Biomolecule Preconcentration by Merging Ion Concentration Polarization, Anal. Chem., 88 , 988 -996, 2016.

延伸閱讀