透過您的圖書館登入
IP:3.138.192.146
  • 學位論文

具摻雜銀奈米粒電洞阻擋層之鈣鈦礦太陽能電池研究

The study of perovskite solar cell with a silver nanoparticle-doped hole blocking layer

指導教授 : 蘇水祥
共同指導教授 : 侯政杰(Cheng-Chieh Hou)

摘要


本論文主旨在研製有機金屬鹵化物鈣鈦礦太陽能電池並探討其特性,以[6,6]-phenyl C61-butyric acid methyl ester (PCBM)作為電洞阻擋層(hole blocking layer, HBL)及2,2′,2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) 作為緩衝層。於電洞阻擋層中摻入銀奈米粒,增加光散射及鈣鈦礦主動層光吸收率,藉此提升元件特性。 實驗結果顯示,於PCBM中摻雜銀奈米粒並優化摻雜比例為0.5 wt%時,入射光產生較佳反射與散射現象,提高鈣鈦礦主動層光吸收率,藉此提升電池能量轉換效率(power conversion efficiency, PCE)。於PCBM與陰極之間加入TPBi作為緩衝層,在最佳厚度為3 nm時,表面粗糙度(root-mean-squire, RMS)降至11 nm,對陰極與緩衝層有較佳接觸,元件PCE亦獲得提升。鈣鈦礦太陽能電池元件結構最佳化後為 ITO/PEDOT:PSS/PbI2/CH3NH3I/PCBM:Ag NPs/TPBi/Ag,元件特性:開路電壓(open circuit voltage, VOC)為0.92 V、短路電流密度(short circuit current density , JSC)為14.36 mA/cm2、填充因子(fill factor, F.F.)為52%及PCE為6.86%。

關鍵字

none

並列摘要


In this study, the organometal halide perovskite solar cell (PVSK) have been fabricated and characterized. We have manipulated [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as a hole blocking layer (HBL) and 2,2′,2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) as a buffer layer. To improve device performance, silver nanoparticles (Ag NPs) have been doped into the HBL which might increase the incident light by scattering and raise up the absorbance of active layer. Experimental results reveal that the optimized doping concentration of Ag NPs in PCBM is 0.5 wt%. A great agreement of incident light between reflection and scattering increases the power conversion efficiency (PCE) of a PVSK. TPBi is inserted between HBL and cathode to be a buffer layer and its thickness is optimized of 3 nm. The root-mean-square (RMS) of TPBi is decreased to 11 nm and hence PCE of the PVSK enhances owing to a good contact between cathode and buffer layer. A PVSK under the optimized structure of ITO/PEDOT:PSS/PbI2/CH3NH3I/PCBM:Ag NPs/TPBi/Ag shows open circuit voltage (VOC) of 0.92 V, short circuit current density (JSC) of 14.36 mA/cm2, fill factor (F.F.) of 52%, and PCE of 6.86% at AM 1.5G of 100 mW/cm2.

並列關鍵字

none

參考文獻


[2] H. Zhou, Q. Chen, G. Li, S. Luo, T. b. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells”, Science, vol. 345, p. 542(2014).
[3] K. Kawano and C. Adachi, “Reduced initial degradation of bulk heterojunction organic solar cells by incorporation of stacked fullerene and lithium fluoride interlayers”, Appl. Phys. Lett., vol. 96, p. 053307 (2010).
[4] J. Weickert, H. Sun, C. Palumbiny, H. C. Hesse and L. S. Mende, “Spray-deposited PEDOT:PSS for inverted organic solar cells”, Sol. Energy Mater. Sol. Cells, vol. 94, p. 2371 (2010).
[5] P. P. Cheng, L. Zhou, J. A. Li, Y. Q. Li, S. T. Lee, and J. X. Tang, “Light trapping enhancement of inverted polymer solar cellswith a nanostructured scattering rear electrode”, Org. Electron., vol. 14, p. 2158 (2013).
[6] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., vol. 48, p. 183 (1986).

延伸閱讀