透過您的圖書館登入
IP:3.135.198.49
  • 學位論文

手部外骨骼式復健裝置開發

Development of Exoskeletal Rehabilitation Device for Hand

指導教授 : 林志龍
共同指導教授 : 蔣瑋齊(Wei-Chi Chiang)

摘要


中風是常見的神經系統疾病之一,也是台灣復健的主要人群。大多數中風患者都有運動障礙問題,限制了他們對服務對像日常生活的參與。中風患者常見的運動問題是癱瘓。大多數來訪者存在肌肉張力和運動控制功能障礙,影響他們在日常生活中的獨立性。傳統復健僅針對中風患者的有限和部分運動提供訓練。通過外骨骼機器人手指關節開發輔助復健裝置,可以讓個案執行上肢遠端的全方位運動,增強神經可塑性和神經元的連接,促進運動功能的恢復。對於上肢動作障礙的個案來說,手部康復對於恢復日常生活活動的獨立性是最具挑戰性的。在以往的研究中,具有基於動態控制策略的機器人設備可以幫助手指的有效康復。然而,據我們所知,很少有現有的手指外骨骼允許在康復過程中進行準確的動態控制。在本論文中,我們設計並製造了一種與 Arduino 驅動整合的新型手指關節復健設備,允許雙向控制進行拉伸和彎曲訓練。此外,機器人裝置整合了四組雙搖六關節焊接機構、機械手指和步進電機,實現了推拉聯動機構。值得注意的是,這些骨架是由 3D 打印機生產的,它使我們能夠靈活設計和快速製造。最後,我們對開發的原型進行實驗,以研究其動力行為和控制器性能。實驗結果顯示:復健機器人裝置不僅保留了手指的自然運動,而且可以控制外骨骼和手指關節的動態控制。最重要的是,動態測試顯示:此機器人設備可以提供手指運動復健時最小阻力。未來,我們希望將這種 3D 列印機器人可以應用於中風康復和遠端操控應用。

關鍵字

機器人 手指復健 3-D列印 中風

並列摘要


Stroke is one of the common neurologic diseases and is the major population in the rehabilitation department in Taiwan. Most stroke patients have motor impairments, limiting their participation in the client’s daily life. Most of the clients have dysfunction in muscle tone and motor control Conventional -rehabilitation-only provides training for the limited and partial movements in stroke patients. Development of auxiliary rehabilitation devices by the exoskeleton robotic finger joints could provide the clients to execute the full range of motion of the distal part of the upper extremity, enhancing neuroplasticity and the connection of neurons and promoting the recovery of motor performance. Rehabilitation of the fingers is the most challenging for the restoration of independence in daily activities for individuals displaying disabilities of the upper extremities. Few robotic devices with -dynamic controls were applied to help patients to execute finger movements. This study designed and fabricated a new finger joint rehabilitation device integrated with Arduino actuation permitting for bidirectional control performing finger extension and finger flexion. In addition, the robotic devices integrated four groups of double-rocking six-joint welding mechanisms, mechanical fingers, and stepping motors to implement a push-pull linkage mechanism. Notably, the skeletons were produced by a 3-D printer. It provides flexible design and fast manufacture. Finally, we conducted experiments with the developed prototype to investigate its sports results demonstrated that the robotic device of the rehabilitation not only preserves the natural motion of fingers but also can be controlled the dynamic control of both exoskeleton and finger joint. Most importantly, dynamic tests showed the robotic device can provide minimal resistance for the rehabilitation of the finger motion. In the future, we hope such a 3-D printing robotic to be employed for stroke rehabilitation and teleoperation applications.

並列關鍵字

robotic finger rehabilitation 3-D printing stroke

參考文獻


[1] GBD 2016 Stroke Collaborators, Global, regional, and national burden of stroke, 1990–2016 asystematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol, Published doi:10.1016/S1474-4422(19)30034-1, 2019.
[2] Wege A., Zimmermann A. Electromyography sensor based control for a hand exoskeleton. IEEE International Conference on Robotics and Biomimetics ; Sanya, China. pp. 1470–1475, 2007. doi: 10.1109/ROBIO.2007.4522381
[3] Fleischer C., Wege A., Kondak K., Hommel G. Application of EMG signals for controlling exoskeleton robots. Biomedizinische Technik Biomedical Engineering;51(5-6):314–319. doi: 10.1515/BMT.2006.063, 2006.
[4] Barsotti M., Leonardis D., Loconsole C., Solazzi M. A full upper limb robotic exoskeleton for reaching and grasping rehabilitation triggered by MI-BCI. IEEE International Conference on Rehabilitation Robotics; Singapore, Singapore,2015. doi: 10.1109/ICORR.2015.7281174
[5] Frisoli A., Loconsole C., Leonardis D., et al. A new gaze-BCI-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks. IEEE Transactions on Systems Man & Cybernetics Part C; pp. 1169–1179,2012. doi: 10.1109/TSMCC.2012.2226444

延伸閱讀