透過您的圖書館登入
IP:3.138.117.25
  • 學位論文

週期性介電質波導之TM模態分析

Analysis of TM modes for periodic dielectric waveguides

指導教授 : 孫迺翔

摘要


本論文針對 TM 模態介電質光柵波導結構做模擬,並分析其特性與 TE 模態介電質光柵波導有何差別,我們以 Floquet-Bloch 理論作為光柵區的能量分析之基礎,分析光波傳遞在第一階布拉格光柵與第二階布拉格光柵的不連續介面造成能量傳輸、反射與輻射損失的重要物理特性。我們針對五種不同的週期性光柵波導結構進行模擬,分別為矽光子結構、Liner-C結構、Graded Index波導結構(部分材料的折射率以漸升或漸降的方式變化),及含有Separate Confinement Heterostructure介電質的波導結構,最後是弦波光柵結構。模擬的結果,可以發現TM模態的等效折射率(實部)會小於TE模態。我們在模擬特殊光柵Liner-C結構後,分析其結果發現與傳統一般光柵特性不同,其二階光柵之共振區與α值皆大於一階光柵的值,此結構不論一階還二階光柵結構在TM模態下都有較TE強的共振效果,而在程式設計方面還有很多不足的地方,在模擬過程會有部分結構的能量計算有問題,這部分為未來需改善的部分。

關鍵字

none

並列摘要


In this thesis, we simulated and analyzed the TM modes of periodic dielectric waveguide structures. The spectrum of TM modes are compared with that of TE modes. The Floquet-Bloch theory is used to analyze grating structures. The transmission, reflection and radiation efficiencies of first Bragg and second Bragg condition of gratings are calculated in this study. In addition, we simulated five structures of periodic dielectric waveguides, which are Liner-C grating structure, gratings with sine structure, a silicon photonic waveguide, a separate confinement heterostructure waveguide, and a graded index waveguide. The simulated results show that the real part of effective index of the TM mode is smaller than that of the TE mode. On the other hand, the resonance region and attenuation constants of the second Bragg grating are larger than those of the first-order grating in Liner-C gratings. Moreover, the first Bragg and second Bragg of TM mode have stronger coupling effects than those of TE modes.

並列關鍵字

none

參考文獻


[1] H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett., vol. 18, pp. 152-154, Feb. May 1971.
[2] M. Okamoto, K. Sato, H. Mawatari, F. Kano, K. Magari, Y. Kondo and Y. Itaya, “TM mode gain enhancement in GaInAs/InP Lasers with tensile strained-layer superlattice,” IEEE J. of Quantum Electron., vol. QE-27, no. 6, pp. 1463-1469, June 1991.
[3] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J., vol. 48, pp. 2909-2947, Nov. 1969.
[4] G. A. Evans, D. P. Bour, N.W. Carlson, R. Amantea, J. M. Hammer, H. Lee, M. Lurie, R. C. Lai, P. F. Pelka, R. E. Farkas, J. B. Kirk, S. K. Liew,W. F, Reichert, C. A. Wang, H. K. Choi, J. N.Walpole, J. K.Butler, W. F. Ferguson, Jr., R. K. DeFreez, and M. Felisky, “Characteristics of coherent two-dimensional grating surface emitting diode laser arrays during CW operation,” IEEE Journal of Quantum Electronics, vol. 27, pp. 1594-1605, 1991.
[5] G. A. Evans, and J. M. Hammer, “Surface emitting semiconductor lasers and arrays,” Academic Press, Inc., San Diego, ISBN 0-12-244070-6, 1993.

延伸閱讀