透過您的圖書館登入
IP:18.221.158.72
  • 學位論文

以偏好導向為相似性量測的協同過濾式推薦

A Preference Based Similarity Measure for Collaborative Filtering Recommendation

指導教授 : 李麗華
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在現今的電子商務(Electronic Commerce)環境中,協同過濾式推薦技術(Collaborative Filtering Recommendation, CF)經常被建構成推薦系統(Recommendation System, RS),且運用層面相當廣泛,如電影、書籍等推薦運用。協同過濾式推薦之方法,旨在找出與目標使用者(Active User)有類似偏好(Preference)的相似使用者(Similar User),利用相似使用者的已知評分(Given Rating)記錄,推測目標使用者對尚未評分的項目是否具有偏好,再找出可能偏好的項目,推薦給目標使用者。為了能找出與目標使用者偏好最相近的相似使用者,過去有學者提出許多的相似度量測(Similarity Measure)及挑選相似使用者的方法,這些方法都能評估使用者之間的關係,並找出偏好相似的使用者。然而,隨著推薦系統運作時間的增加,必須處理的資料也日益漸增,導致傳統相似度量測產生計算耗時的問題,因此將對線上的即時推薦效能造成極大的阻礙。 本研究為了強化協同過濾式推薦的推薦效能(Performance),提出偏好導向相似性量測(Preference Based Similarity Measure, PBSM)的協同過濾式推薦方法。利用使用者對項目的評分,以二元值區別是否對項目具有偏好,同時針對推薦上的考量,篩選出對推薦結果具有影響力的正向評分使用者,再利用反互斥或邏輯運算(Exclusive-NOR, XNOR),計算使用者的偏好一致性(Conformity)。 透過本研究的實驗證明,偏好導向相似性量測的協同過濾式推薦與傳統相似度量測之協同過濾式推薦互相比較,偏好導向相似性量測不但改善傳統相似度量測的計算複雜度問題,且能保有預測結果的準確性(Accuracy)。在推薦方面,偏好導向相似性量測的推薦成功率亦優於傳統相似度量測,故能同時提昇協同過濾式推薦之推薦效能,增加推薦準確度。此外,由於計算時間的降低,更能符合線上即時推薦的需求。

並列摘要


Collaborative Filtering (CF) recommendation technique is frequently used for building Recommendation Systems (RS). This technique exists for many applications such as recommendations for movies, books, music, and products. The reason of applying CF for recommendations is to find users with similar preferences such that the group of users can be utilized for prediction and the active user’s unrated item is, then, predicted. To find similar users, the similarity measure must be employed. In the past, many similarity measures are proposed such as Pearson’s Correlation (PCC), Euclidean Distance (ED), Cosine Similarity (COS), or Constrained Pearson’s Correlation (CPC). These methods compute the correlation, distance, or direction for each pair of user’s information. If the number of user is large, the computation will take time. Moreover, as we all know, in e-commerce environment, user information and the amount of users will naturally increase with time. Therefore, a good on-line CF process becomes difficult if the user database grows rapidly. To improve the performance of CF recommendations, this research proposes the Preference Based Similarity Measure (PBSM) for CF recommendation. The PBSM can distinguish a user’s preferences based on user ratings and can identify the conformity between users’ preferences. This is done by changing user ratings into binary values to represent user’s positive preferences. The proposed method uses the exclusive-NOR (XNOR), the logical operation, to compare the conformity between users’ preferences. Users that have high conformity with the active user are determined to be similar users. The preference of these similar users will be applied for recommendation. To prove the proposed PBSM can generate better performance, the experiments are designed to allow comparison with traditional similarity measures for CF recommendation. Our experimental results indicate that the proposed PBSM has better prediction outcomes in terms of MAE measure. Also, the PBSM achieves a successful rate which is higher than that of traditional similarity measures. The study proves that the proposed PBSM can enhance the performance of recommendations, and is moreover simple to calculate, which in turn allows for more efficiency than traditional methods.

參考文獻


[1] H. J. Ahn (2008), “A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem,” Information Sciences, Vol. 178, No. 1, pp. 37-51.
[2] M. Y. H. Al-Shamri and K. K. Bharadwaj (2008), “Fuzzy-genetic approach to recommender systems based on a novel hybrid user model,” Expert Systems with Applications, Vol. 35, No. 3, pp. 1386-1399.
[6] Y. L. Chen and L. C. Cheng (2008), “A novel collaborative filtering approach for recommending ranked items,” Expert Systems with Applications, Vol. 34, No. 4, pp. 2396-2405.
[7] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry (1992), “Using collaborative filtering to weave an Information tapestry,” Commun. ACM, Vol. 35, No. 12, pp. 61-70.
[9] GroupLens Research. (2010), Available at: http://www.grouplens.org/node/73.

被引用紀錄


邱聖家(2013)。使用相似性指標辨識萃智解答模型:以相關趨勢辨識為例〔碩士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2013.00430
楊銘鴻(2013)。自動推薦於資源整合最佳化之研究-以健康休閒產業育成資源為例〔碩士論文,國立臺北大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0023-2607201314413300
楊昇翰(2016)。以社群網評論分析作為信任基礎之推薦系統〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-1108201714025314
陳柏良(2017)。一個藉由改善稀疏矩陣處理方式之協同過濾式推薦〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-2712201714440796
鄭詠元(2017)。以網路評論分析作為信任基礎之推薦系統〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-2712201714440897

延伸閱讀