透過您的圖書館登入
IP:18.219.90.165
  • 學位論文

以社群網評論分析作為信任基礎之推薦系統

A Trust Based Recommender System by Analyzing User Comments of Social Network

指導教授 : 李麗華
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


網際網路的快速發展使得推薦系統廣泛被運用在網站上。推薦系統可以幫助使用者減少搜尋項目的時間並提供優選項目給使用者。過去有關推薦系統的研究中,協同過濾式推薦已廣泛且成功地被應用於網路推薦上,隨著近年社群網路的發展,現在許多學者亦透過使用者彼此間的信任關係做為協同過濾(Collaborative Filtering)推薦之研究,並稱之為以信任為基礎的推薦系統(Trust-based Recommender System: TBRS),此系統中最重要的一項研究議題即如何定義最佳的信任初始值。 過去研究有關信任初始值的設定通常為隨機或直接設定,然而這些初始值均未考量使用者間的正向或負向關係,為了能找出使用者間的正負向關係,本研究運用社群間的使用者評論作為分析使用者間的關係,運用TF-IDF算法計算每個評論的特徵向量,再將評論之特徵向量輸入支持向量機(Support Vector Machine)進行信任模型的訓練,最後結合信任模型(Trust Model)與信任推演模型(Trust Propagation Model)建立個人的信任網路(Trust Network)。 本研究提出一個以網路社群評論信任值為基礎之協同過濾式推薦系統,本研究改善過去信任初始值之設定方法,經實驗結果顯示,本研究之成果優於其它以信任為基礎之推薦方法。

並列摘要


Due to the repaid growth of Internet, the recommender systems are widely used as the network service. Recommender system can help user reducing the search cost and providing a list of suitable items for the user. In the past study, Collaborative Filtering Recommendation (CF) has been widely applied and successfully used in the Internet. Now, with the popularity of social network, many researchers have proposed using trust between users for collaborative filtering recommendation. This kind of approach we also call it as the Trust-based Recommender System (TBRS). And, one of the important issues about TBRS is how to find and define the optimal trust values. In the past study, the initial trust value is usually set by a random number or directly set by a certain value. The initial trust values shall represent positive or negative relationship between users. However, the positive/negative relationship of initial trust values did not considered in the past studies. In order to find out the positive/negative relationship, this research analyzed the users’ comment of social network. The features of these comments are analyzed and derived by using Term Frequency-Inverse Documents Frequency (TF-IDF) method. To obtain the training model for finding the positive/negative relationship, these features are then classified by using Support Vector Machine (SVM). The obtained Trust Model and the Trust Propagation Model are then integrated to generate the user’s trust network model. This research has proposed a trust based recommender system by analyzing user comments of social network. The proposed method improves the finding of initial trust value. From the experiments results, it proves that the proposed method has better prediction outcome than other methods.

參考文獻


[5] 遊和正、黃挺豪、陳信希,”領域相關詞彙極性分析及文件情緒分類之研究”,中文計算語言學期刊,第17卷第四期,第33-48頁,2012。
[8] 黃河銓、李奕縉、黃昱凱,” 整合信任網路與回饋機制之個人化餐廳推薦系統”,資訊與管理科學,5(2),65-78,2012。
[2] 廖品妍,”以顯性評價為主之相似性推薦”,朝陽科技大學資訊管理系碩士論文,2010。
[3] 蔡美慧,”以偏好導向為相似性量測的協同過濾式推薦”, 朝陽科技大學資訊管理系碩士論文,2010。
[4] 許榮望,”評論語意自動化分析與顧客滿意度應用之研究-以中國旅遊網站為例”,朝陽科技大學資訊管理系博士論文,2013。

被引用紀錄


鄭詠元(2017)。以網路評論分析作為信任基礎之推薦系統〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-2712201714440897

延伸閱讀