透過您的圖書館登入
IP:3.141.199.243
  • 學位論文

工業電鍍廢水對不同生物測試法敏感性差異研究

Sensitivity Differences for Industrial Electroplating Wastewater by Different Bioassay

指導教授 : 王順成
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


台灣蓬勃的工業使用了大量之化合物,衍生出許多工業廢水污染問題,其中以電鍍工廠所排放之廢水,含有大量有毒化合物及重金屬,若未妥善處理直接排入河川、湖泊及海洋等水域中,對水生環境易造成毒性影響,如具持久性、累積性、致突變性及致癌性等。本研究利用往昔 Microtox 生物毒性試驗、靜水式鯉魚毒性測試法與水蚤靜水式毒性測試法,檢測彰化工業區三間電鍍工廠廢水毒性、單一重金屬及複合重金屬之毒性之資料,進行複合重金屬之共同毒性係數分析,以了解複合重金屬之協力作用 (Synergie effect)、加成作用 (Additinial effect) 或拮抗作用 (Antagonie effect) 之毒性相互關係。另參照往昔檢測彰化工業區三間電鍍工廠廢水之急毒性,本研究探討工業廢水對生物毒性與水質監測項目之 COD (Chemical Oxygen Demand) 間關聯。研究結果:顯示三間電鍍工廠廢水經處理後,其部分重金屬濃度未符合放流水排放標準,其中電鍍 A 工廠放流水中 Zn、Ni 超出排放標準,濃度分別為 46.77 及 8.33 mg/L;電鍍 B 工廠放流水則是 Cr、Zn超出排放標準,其濃度分別為 1.25 及 1.01 mg/L;而電鍍 C 工廠放流水中 Zn、Ni 超出排放標準,其濃度分別為 1.95 及 0.78 mg/L。水蚤生物測試單一重金屬毒性排序為 Hg > Cu > Cr > Cd > Ni > Zn > Pb,其中以 Hg 毒性最高,LC50 值為 0.012 mg/L;Pb 毒性最低,LC50 值為 129.74 mg/L。複合重金屬以電鍍 A 工廠之放流水混合金屬液毒性最高,EC50 值與 LC50 值分別為 4.12 與 0.053 mg/L,共同毒性係數分別為 61.64 (拮抗作用)與 4871.26 (協力作用)。電鍍廠放流水之 TU與水質項目 COD 之關聯不顯著,三間電鍍廠之 TU 與 COD 之相關係數 R2 分別為 0.3565、0.0006、0.8748,顯示電鍍工廠廢水之毒性除了化學分析檢測外,應以生物毒性試驗加以輔助評估其毒性。此外,三種生物毒性試驗皆可用於快速篩選水質之預警依據,且三種試驗生物對重金屬敏感性趨勢皆相似,但因 Microtox 生物毒性試驗檢測時間較短,適合作為電鍍廢水放流水快速篩選,而以靜水式鯉魚試驗進一步檢測廢水對脊椎動物是否也具毒性。

並列摘要


The prosperous industry in Taiwan applied enormous quantity of chemicals and led to very serious wastewater problems. The wastewater generate by electroplating factories is an extremely important one. It contains great amount of toxic compounds and heavy metals. If handled improperly and discharged directly into rivers, lakes, oceans, or other water resources, would have toxic effect to the aquatic environment, and the effect would be persistent, accumulatives, mutagenic and carcinogenic. In this study we took water samples at different steps of wastewater processing procedures, including the final effluent water, from three electroplating factories in Changhua industrial zone. The quality (pH, Chemical Oxygen Demand (COD), Suspended Solid (SS)) and the heavy metal containts of these water samples was measured, the biotoxicity was examined with the yore Microtox toxicity test, the hydrostatic test of Cyprinus carpio and of Daphnia magna. The toxicity of the heavy metals contained in the effluent water of these three factories was simulated and compared to the toxicity of single heavy metal to calculate the co-toxicity coefficient. The heavy metal contents in the effluent water of the three sampled electroplating factories did not qualify to the wastewater standard established by Environmental Protection Agency (EPA) of Taiwan. The effluent water of factory A, B, and C contained too many of Zn (46.77 mg/L) and Ni (8.33 mg/L), Cr (1.25 mg/L) and Zn (1.01 mg/L), and Zn (1.95 mg/L) and Ni (0.78 mg/L), respectively. The toxicity of a single heavy metal to Daphnia magna in decreasng was Hg > Cu > Cr > Cd > Ni > Zn > Pb. Mercury is most toxic with a LC50 of 0.012 mg/L. Lead is least toxic with a LC50 of 129.74 mg/L. Among the three sampled electroplating factories, the effluent water of factory A, is industrial plating, is most toxic, with an EC50 of 7.57 mg/L in microtox test and a LC50 of 0.053 mg/L to Daphnia magna. Its cotoxicity coefficient is 61.64, in antagonic effect, while tested with microtox test and is 4871.26, in synergistic effect, while tested with Daphnia magna. Cotoxicity coefficient of the effluent water from all three sampled electroplating factories indicated compound heavy metals had antagonic effect to Vibrio fischeri (Microtox test) and had very high, in contrary, synergistic effect to Daphnia magna. The results of biotoxicity tests of this study were combined with the results studied previously by this laboratory to compare the correlation between the TUa of effluent water of the three sampled electroplating factories and the chemical oxygen demand (COD) of water quality. The relationship is not steady. Correlation coefficient R2 is 0.3565,0.0006 and 0.8748 for the three factories, respectively. All three biotoxicity test applied in this study have similar sensitivity to the toxicity of heavy metals. The Microtox method requires shortest time and can act as a quick bioassay method for the quality of wastewater of electroplating factory. Whereas the Cyprinus carpio test can act as an chronic test for understanding does the effluent water be toxic to vertebrate too.

參考文獻


5. 吳惟楷,「電鍍工廠廢水之生物與化學毒性分析之相關性」,碩士論文,私立朝陽科技大學環境工程研究所,臺中(2014)。
13. 陳建龍,「利用Microtox®法評估複合重金屬之毒性」,碩士論文,私立朝陽科技大學環境工程研究所,臺中(2011)。
14. 楊惠婷,「都市計畫農業區污染場址再發展機制面之研究」,碩士論文,國立成功大學都市計劃學系碩士班(2006)。
23. Barata, C., Baird, D. J., Nogueira, A. J. A., Soares, A. M. V. M., Riva, M. C., “Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus,” Implications for multi-substance risks assessment, Aquatic Toxicology, Vol. 78, pp. 1–14(2006).
24. Boluda, R., Quintanilla, J. F., Bonilla, J. A., Sáez, E. and Gamón, M., “Application of the Microtox® test and pollution indices to the study of water toxicity in the Albufera Natural Park (Valencia, Spain),” Chemosphere, Vol.46, No.2, pp. 355–369(2002).

延伸閱讀