透過您的圖書館登入
IP:18.191.195.110
  • 學位論文

利用MicrotoxR法評估複合重金屬之毒性

The Acute Toxicity of Binary Heavy Metal Mixtures Evaluated by the Microtox® Assay

指導教授 : 王順成
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究利用Microtox生物毒性檢測技術,檢測單一重金屬及複合重金屬之毒性,以求得複合重金屬間之共同毒性係數,俾了解複合重金屬間之相互關係為協力作用(Synergism effect)、添加作用(Addition effect)或拮抗作用(Antagonism effect)。另檢測彰化工業區二間電鍍工廠廢水之急毒性,並探討其EC50值與水質監測項目之COD(Chemical Oxygen Demand)相關性。本研究結果:依據EC50值單一重金屬毒性排序為Hg>Cu>Zn>Pb>Cd>Ni>Cr,其中毒性最高為Hg,EC50值為0.13 mg/L;Cr毒性最低,EC50值為59.33 mg/L。複合重金屬中Cr + Ni及Zn + Pb其共同毒性係數超過110為協力作用,而Cr + Cu及Ni + Pb其共同毒性係數為85-95為添加作用,而其他金屬混合皆屬拮抗作用。電鍍工廠廢水中以A廠廢水經處理過後,其EC50值由8.59降低至56.54,達到中生物毒性,明顯可看出毒性降低;B廠廢水經處理過後,其EC50值由0.73降至9.56,水質仍為極毒生物毒性,其水質中Cu含量為1.07 mg/L,以至於水質呈現高毒性,說明處理程序仍須加強。廢水廠(A廠)之EC50值與水質項目之COD間相關性屬低相關(R2=0.50);廢水廠(B廠)之EC50值與水質項目之COD間相關性屬低相關(R2=0.06),說明電鍍工廠類型廢水EC50值與COD並不相關,但其結果仍可作為毒性預警之依據,達快速篩選水質之毒性。

並列摘要


This study used Microtox testing method to test the toxicity of a single heavy metal, and binary heavy metal to seek cotoxicity coefficient of binary heavy metal to determine mutual relationships between heavy metals, such as the synergistic effect, additive effect or the antagonistic effect. Meanwhile, this study also tested the acute toxicity of wastewater from two electroplating factories in the Changhua Industrial Park, and discussed the relevance between EC50 value and the COD of the water quality monitoring project. The results suggested that, the single heavy metal toxicity base on the EC50 was in the descending order of Hg>Cu>Zn>Pb>Cd>Ni>Cr. The toxicity of Hg was the highest with EC50 at 0.13 mg/L; and the toxicity of Cr was lowest with EC50 at 59.33 mg/L. Among the binary heavy metals, the cotoxicity coefficient of Cr + Ni and Zn + Pb was above 110, indicating asynergism effect. The cotoxicity coefficient of Cr + Cu and Ni + Pb was 85-95, indicating an addition effect. Other heavy metal compositions had the antagonism. The EC50 value of the treated wastewater from electroplating factory A dropped from 8.59 to 56.54 at the medium biotoxicity level, demonstrating an apparent reduction in toxicity. The EC50 value of the treated wastewater from electroplating factory B dropped from 0.73 to 9.56 at highly toxic level. Its Cu content was 1.07 mg/L, making the water highly toxic. Hence, the wastewater treatment procedure should be strengthened. The EC50 value of Factory A had a low correlation with COD of the water quality project (R2=0.50); The EC50 value of Factory B had a low correlation with COD of the water quality project (R2=0.06), suggesting that the EC50 value of the wastewater of the electroplating factories are not correlated with COD, however, the results can be the basis for toxicity early warning and rapid screening of water toxicity.

參考文獻


行政院環境保護署,生物毒性篩選試驗研究(1994)。
吳翊豪,六種植物吸收重金屬之植生復育法研究,碩士論文,朝陽科技大學環境工程與管理所,臺中(2009)。
Alloway, B. J.,Soil processes and the behavior of metals, John Wiley and Sons, New York, pp. 7–28(1990).
Al-Muzaini, S., Beg, M.U., Al-Mutairi, M. and Al-Mullalhah, A., Seawater quality at industrial effluents discharge zone, Water Science and Technology, Vol. 32, No. 11, pp. 21–26(1995).
Altenburger, R., Backhaus, T., Boedeker, W., Faust, M., Scholze, M., Grimme, H., Predicting of the toxicity of multiple chemical mixtures to Vibrio fisheri: mixtures composed of similarly acting chemicals,Environmental Toxicologyand Chemistry, Vol. 19, pp. 2341–2347(2000)

被引用紀錄


蔡國拱(2013)。合成奈米銀複合光觸媒降解水中壬基苯酚及利用Microtox法評估毒性效應〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-2712201314043016
吳惟楷(2014)。電鍍工廠廢水之生物與化學毒性分析之相關性〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-2611201410183392
簡菁慧(2016)。工業電鍍廢水對不同生物測試法敏感性差異研究〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-1108201714021138

延伸閱讀