透過您的圖書館登入
IP:3.133.108.241
  • 學位論文

各類固定污染源VOCs排放特徵與貢獻量分析研究

Characteristic and contribution of volatile organic compounds emission from major stationary emission sources

指導教授 : 楊錫賢
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究針對各類固定污染源排放之VOCs進行採樣分析,建立各製程指紋圖譜及排放係數,進一步推估各製程之排放量,並探討製程排放之VOCs對人體及環境危害程度。各製程採樣對象參考AP-42之製程類別分類為16項,研究結果顯示鍋爐汽電共生、鍋爐發電、燃煤、燃油鍋爐蒸氣及鋼鐵製造等製程排放濃度為59~3514 ppb;有機溶劑作業、其他合成樹脂或塑膠製造及聚酯樹脂製造等程序濃度為49~12985 ppb;鋁鑄造及鋼鑄造程序濃度為66~275 ppb,其餘製程濃度為170~21106 ppb。此外,在各類污染源中,Aromatics為各製程常出現之族群,排放平均約為51%;其中若製程原料為溶劑、樹脂及塑膠粒時則以Carbonyls排放比例最高,約為46.1-90.4%。且在各製程排放特徵物種方面,以Toluene、Acetone、Ethyl Acetate、Benzene及Methyl Ethyl Ketone等為各製程常出現之VOCs特徵物種,而鍋爐發電程序及鋼鐵製造程序因行業和操作條件等不同,其排放特徵與大多數製程有所差異,鍋爐發電排放特徵為Isobutane、n-Butane及Propene,鋼鐵製程排放特徵為1-Butene、Ethanol、Cis-2-Butene。 在排放係數建立方面,鍋爐汽電共生為57.5 g/ton-生煤;鍋爐發電分別為0.71、0.18與8.38 g/ton-生煤;燃煤鍋爐分別為0.54、2.31與0.76 g/ton-生煤;燃油鍋爐分別為31.5、0.35與49.1 g/ton-重油;鋼鐵製造為9.37 g/ton-燒結磺;有機溶劑作業分別為65.8、57.8、32.7與0.51 g/ton-溶劑or光學玻璃;合成樹脂或塑膠為0.003與0.06 g/ton-塑膠粒or樹脂;聚酯樹脂製造分別為0.002與0.54 g/ton-聚醚多元醇;鋁鑄造分別為0.008、0.01與0.08 g/ton-鋁合金錠or鎂錠;鋼鑄造分別為0.0001與0.006 g/ton-不鏽鋼錠;膠帶業製造為22.6 g/ton-醋酸乙酯;PU皮製造為0.61 g/ton-樹脂;熱煤加熱為0.03 g/ton-樹脂;塑膠品塗裝為0.01 g/ton-聚脂箔膜;金屬熱處理為0.05 g/ton-五金零件;非鐵金屬鍛造為0.01 g/ton-天然氣;孔版印刷程序為384 g/ton-油墨。各製程臭氧生成潛勢(OFP)以孔版印刷程序1894 g O3/ton為最高,鋼鑄造0.005 g O3/ton為最低。在排放等量總VOCs的情況下,以鋼鐵製造對臭氧生成反應性最高,其次分別為聚酯樹脂、孔版印刷、鍋爐發電及膠帶業製造等製程。本研究利用USEPA IRIS及Cal. EPA公告之SF及RfC進行各製程風險分析,在排放等量總VOCs的情況下,以鋼鐵製程對人的致癌風險為最高,塑膠品塗裝為最低;在非致癌風險方面,亦以鋼鐵製程之危害為最高,熱媒加熱為最低。

並列摘要


Volatile organic compound emitted from various sources are measured in this study. The fingerprint and emission factors are established and the emission inventories are estimated. Furthermore, the health risk and ozone formation potential for these emission sources are analyzed. The sources are classified as 16 according to AP-42. The results show that the TVOC emission concentration are 59 ~ 3514 ppb for cogeneration boiler, coal-fired boiler, oil-fired boiler and iron manufacturing; TVOC emission concentration are 49 ~ 12985 ppb for organic solvent process, synthetic resin, and polyester resin manufacturing process; TVOC emission concentration are 66 ~ 275 ppb for aluminum foundry and steel foundry process; the other are 170~21106 ppb. Aromatic are the most common group in these emission sources, which accounts for 51% emissions. For organic solvent process, synthetic resin, and polyester resin manufacturing process, carbonyls are the dominant group, which accounts for 46.1~90.4%. Toluene, acetone, ethyl acetate, benzene and methyl ethyl ketone are the most common species. For boilers, isobutene, n-butane and propene are the characteristic species. 1-Butene, ethanol and cis-2-butene are characteristic species for steel making process. . The TVOC emission factors are 57.5 g/ton-coal for cogeneration boiler; 0.71, 0.18 and 8.38 g/ton-coal for power plant; 0.54, 2.31 and 0.76 g/ton-coal for coal-fired boiler; 31.5, 0.35 and 49.1 g/ton-oil for oil-fired boiler; 9.37 g/ton-sinter ore for iron manufacturing. TVOC emission factors are 65.8, 57.8, 32.7 and 0.51 g/ton-solvent for organic solvent process; 0.003 and 0.06 g/ton-resin for synthetic resin manufacturing process; 0.002 and 0.54 g/ton-stock for polyester resin manufacturing process; 0.008, 0.01 and 0.08 g/ton-aluminum for aluminum foundry; 0.0001 and 0.006 g/ton-steel for steel foundry process. Stencil printing has the highest ozone formation potential (OFP) (1894 g O3/ton). Based on the same TVOC emission, the ozone formation potential is highest for steel making process, followed by polyester resin, stencil printing boiler and tape manufacturing. Slope factor (SF) and reference concentration (RfC) from USEPA IRIS and Cal. EPA are used for health risk analysis. Based on the same TVOC emission, steel making has the highest potential to cause cancer. For non-cancer risk analysis, steel making has the highest potential as well.

參考文獻


廖浩佑,「石化工業區面源與都市交通線源非甲烷碳氫化合物對居民的健康風險比較」,國立臺北科技大學環境工程與管理研究所,台北(2013)。
An, J., Zhu, B., Wang, H., Li, Y., Lin, X., Yang, H., 2014. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmospheric Environment, 97, 206-214.
Atkinson, R., 2000. Atomospheric chemistry of VOCs and NOx. Atmospheric Enviornment, 34, 2063-2010.
Badol, C., Locoge, N., Galloo, J.C., 2008. Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions Part II: Source contribution assessment using the Chemical Mass Balance (CMB) model. Science of the Total Envioronment, 389, 429-440.
Brown, S.G., Frankel, A., Hafer, H.R., 2007. Source apportionment of VOCs in Los Angeles area using prositive matrix factorization. Atmospheric Environment, 41, 227-237.

延伸閱讀