透過您的圖書館登入
IP:3.133.131.168
  • 學位論文

應用CMB受體模式解析工業區揮發性有機物污染源貢獻量

Source Apportionment of Volatile Organic Compounds in Industrial Parks by using CMB Receptor Model

指導教授 : 楊錫賢
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究於工業區進行揮發性有機物 (VOCs) 組成特徵與濃度採樣分析工作,並建置本土化指紋資料庫,採集之90家工廠污染排放源,共270個指紋樣品,再運用化學質量平衡模式 (CMB8.2) 探討各污染源對大氣中VOC組成貢獻量。 於工業區大氣樣品分析結果中,總揮發性有機物濃度介於23.8~448.6 ppb,其中採樣點S5、S6、S9分別測得最高濃度,其值分別為350.6 ppb、448.6 ppb與319.4 ppb,顯示採樣點鄰近污染源,此為該採樣點濃度較高之主因。CMB8.2模式模擬結果顯示移動源為主要之VOCs排放源,污染貢獻量高達5.39~58.7%;其次為化學製品製造業10.5~46.6%、電子零組件製造業5.50~43.2%、機械設備製造業23.7~34.8%及電腦、電子產品及光學製品製造業0~33.2%。研究中對指紋資料庫之適用性進行比較,顯示大多數模擬結果之貢獻質量百分比無法達到模式之要求值80~120%,可能為污染源遺漏現象。而以受體點周遭污染源進行模式模擬時,模擬結果之貢獻質量百分比明顯獲得改善。顯示再運用CMB模式時,以受體點周遭解析污染源可得到較佳的模擬結果。

並列摘要


In this study, the compositions and concentrations of volatile organic compounds (VOCs) emitted from industrial stacks and in the ambient air were measured. The local emission profiles of various industries were established. Ninety plants with 3 samples for each plant and totally 270 samples were investigated in this study. In addition, 9 ambient air samples were used for the source apportionment study by using Chemical Mass Balance (CMB 8.2) model. The results show that the total volatile organic compounds (TVOCs) concentrations were 23.8 ~ 448.6 ppb in the atmosphere. The concentrations are higher for the sites near emission sources. The simulation results of CMB8.2 model show that the main VOCs sources were the mobile sources. The contribution is 5.39 ~ 43.2%. The contributions of chemical products manufacturing, electronic components manufacturing, machinery and equipment manufacturing, and computers, electronic products and photochemical manufacturing are 10.5 ~ 46.6, 5.50 ~ 43.2, 23.7 ~ 34.8, and 0 ~ 33.2%, respectively. It shows that the simulation results con not meet the requirements of the estimated value of 80 ~ 120%. Selecting the source profiles of the industrial plants near the receptors for CMB model can improve the estimation.

參考文獻


Atkinson R., 1990. Gas-Phase tropospheric chemistry of organic compounds:a review. Atmos. Environ. 24A, 1-41.
Badol, C., Locoge, N., Galloo, J.C., 2008. Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions Part II: Source contribution assessment using the Chemical Mass Balance (CMB) model. Science of Total Envioronment 389, 429-440.
Carter, W.P.L., 1994. Development of Ozone Reactivity Scales for Volatile Organic Compounds. J. Air Waste Manage. Assoc. 44, 881-889.
Chiang, H.L., Hwu, C.S., Chen, S., Wu, M.C., Ma, S.Y., Huang, Y.S., 2007. Emission factors and characteristics of criteria pollutants and volatile organic compounds (VOCs) in a freeway tunnel study. Science of the Total Environment 381, 200-211.
Dimitriades B., 1996. Scientific Basis for the VOC Reactivity Issues Raised by Section 183(e) of the Clean Air Act Amendments of 1990. J. Air & Waste Manage. Assoc 46, 963-970.

被引用紀錄


李旻珊(2016)。各類固定污染源VOCs排放特徵與貢獻量分析研究〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-1108201714021447

延伸閱讀