透過您的圖書館登入
IP:18.216.251.37
  • 學位論文

甲醇蒸氣重組用催化薄膜反應器系統之穩態模擬

Steady-State Simulation of Catalytic Membrane Reactor System for Methanol Steam Reforming

指導教授 : 洪賑城
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究發展出包含催化薄膜反應器、催化燃燒器、進料預熱器及空氣預熱器之催化薄膜反應器系統之數學模式。催化薄膜反應器包含催化反應器以進行甲醇蒸氣重組,以及可滲透氫的鈀膜以進行產物分離。催化燃燒器則用於氧化前述反應器之未滲透氣以提供能量給甲醇蒸氣重組、進料預熱器及空氣預熱器,使得整個反應器系統在熱能上可以自給自足。 數學模式包含17個聯立常微分方程,我們利用4階Predictor-Corrector Method求解,並利用迭代法處理邊界條件。 由電腦模擬結果可得到所有成份在催化薄膜反應器和催化燃燒器中的莫耳流率分佈,及在催化薄膜反應器、催化燃燒器、進料預熱器與空氣預熱器中的溫度分佈。在不提供額外熱源前提下,如果要將催化薄膜反應器與催化燃燒器的溫度分佈控制在理想的範圍內,則必須沿著反應器的座標調整催化薄膜反應器與催化燃燒器中的觸媒密度。 在本研究中,重組觸媒的密度為一定值,而燃燒觸媒的密度則沿著反應器座標增加。

並列摘要


A mathematical model has been developed for a steady-state catalytic membrane reactor system (CMRS) including catalytic membrane reactor (CMR), catalytic combuster (CC), feed preheater (FP) and air preheater (AP). The CMR includes a catalytic reactor for methanol steam reforming (MSR) and a hydrogen-permeable palladium membrane tube for product separation. The CC is used for catalytic oxidation of rejected gas from CMR to supply the heat required for MSR, feed preheater and air preheater, such that the whole reactor system can be self-sufficient in energy. The mathematical model, consisting of 17 simultaneous ordinary differential equations (ODEs), has been solved numerically by the fourth-order Predictor-Corrector method with an iterative method to deal with the boundary conditions. Results of computer simulation reveal the profiles of molar flow rates of all components in CMR and CC along the axial coordinate, as well as the temperatures profiles in CMR, CC, FP and AP. In order to control temperatures in CMR and CC in desired ranges, it has been found that the bulk densities of catalysts in the reactor and combuster might have to be adjusted along the reactor coordinate. In this study, the bulk density of reforming catalyst is constant, however, that of combustion catalyst increases along the reactor coordinate.

參考文獻


1. Ibrahim, D. (2007). Environmental and sustainability aspects of hydrogen and fuel cell systems. International Journal of Energy Research, 31, 29-55
2. Zhang, C., Yuan, Z., Liu, N., Wang, S., & Wang, S. (2006). Study of catalysts for hydrogen production by the high temperature steam reforming of methanol. Fuel Cell, 6, 466-471.
3. Basile, A., Gallucci, F., & Paturzo, L. (2005). Hydrogen production from methanol by oxidative steam reforming carried out in a membrane reactor. Catalysis Today, 104, 251-259.
4. Peppley, B. A., Amphlett, J. C., Kearns, L. M., & Mann, R. F. (1999). Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Applied Catalysis A: General, 179, 21-29.
5. Cubeiro, M. L., & Fiero, J. L. G. (1998). Partial oxidation of methanol over supported palladium catalysts. Applied Catalysis A: General, 168, 307-322.

延伸閱讀