透過您的圖書館登入
IP:18.217.52.46
  • 學位論文

利用表面披覆處理改善奈米碳片的場發射特性

Enhancement of Electron Field Emission Properties of Carbon Nanoflakes by Surface Coating Process

指導教授 : 施文欽
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本篇論文共分成兩部份,在第一個部份是將奈米碳片沉積在矽基板上,並經過金屬濺鍍系統鍍上鐵薄膜,然後送入爐管升溫至600℃通入氨氣以及乙炔進行披覆處理,經過量測發現起始電場可以降到2.2 V/μm,當電場為4.2 V/μm時電流密度可以達到1.0 mA/cm2。 第二個部份是將奈米碳片沉積在玻璃基板上,並經過金屬濺鍍系統鍍上鐵薄膜,然後送入爐管升溫至500℃再通入氨氣以及乙炔進行披覆處理,經過量測發現起始電場可以降到2.5 V/μm,當電場為5.4 V/μm時電流密度可以達到0.8 mA/cm2。 我們成功地使用披覆處理的方式降低奈米碳片的起始電場以及提升場發射電流密度。

關鍵字

奈米碳片 場發射 披覆

並列摘要


This thesis was divided into two parts. In the first part, we deposited the carbon nanoflakes (CNFs) on silicon substrate by the R.F. magnetron sputtering system and used DC sputtering apparatus to deposit the Fe film on carbon nanoflakes. Then we used thermal chemical vapor deposition warmed up to 600℃ and passed over the gas NH3 and C2H2. Under the diode structure condition, the anode and the cathode gap of 200 μm, the turn-on electric field of the sample is 2.2 V/μm while reached 1.0 μ A/cm2 and electric current density reached 1.0 mA/cm2 under 4.2 V/μm. In the second part, we deposited the CNFs by the R.F. magnetron sputtering system on glass substrate and used DC sputtering apparatus to deposit the Fe film on above. Then we used thermal chemical vapor deposition warmed up to 500℃ and passed over the gas NH3 and C2H2. Under the diode structure condition, the anode and the cathode gap of 200 μm, the turn-on electric field of the sample is 2.5 V/μm while reached 1.0 μ A/cm2 and electric current density reached 0.8 m A/cm2 under 5.4 V/μm. We found that coating process lowered the turn-on field of the CNFs and the field emission properties were greatly improved. We concluded that the coating process could change the surface morphology and produced more emission site to increase the emission current density.

參考文獻


[2] Shigeo Itoh, and Mitsuru Tanaka, “Current Status of Field-Emission Displays,” Proceedings of the IEEE, 90 (4), pp. 514-520 (2002)
[3] W. Zhu, G. P. Kochanski, S. Jin “Low-Field Electron Emission from undoped Nanostructured Diamond”, Science, 282, pp.1471 (1998)
[4] J. Robertson “Diamond like amorphous carbon”, Materials Science and Engineering R, 37, pp.129 (2002)
[6] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, pp. 56 (1991)
[7] S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, pp. 603 (1993)

延伸閱讀