透過您的圖書館登入
IP:13.59.61.119
  • 學位論文

應用可拓理論於嵌入式平台之機器人平衡控制

AN EXTENICS-BASED EMBEDDED SYSTEM FOR ROBOT BALANCE CONTROL

指導教授 : 李良德
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本篇論文主要研究的是人型機器人之步行於不同坡度時的穩定平衡控制,由於本研究的焦點是針對機器人的下半身之平衡控制,因此它具有六個馬達六個自由度,分別對應到髖部、膝蓋及腳踝。當步行於不同的坡度時,會判斷機器人全身重心是否落於腳掌所規劃的穩定區間所投射的範圍內,在不同的坡度適時的改變身體重心,使得重心不至於落在不穩定區間的範圍。由於人型步行機器人在行走時,重心位置會隨著坡度改變而偏移,勢必影響行走時的穩定性,本論文建構出一種偵測機器人重心平衡系統,結合ZMP計算與可拓工程方法來使得機器人能夠適應在不同坡度上維持穩定平衡。 本論文係將壓力感測器裝置在機器人腳掌上,並分別收集和分析來自壓力感測器之壓力感測值,並將其轉換成重心的數值。此外,本研究建立一可拓工程方法相關的關聯函數,並透過微控制器送出控制訊號,以調整機器人姿勢,使ZMP 點落於腳掌所規劃的穩定範圍內的區域,從而達到機器人可以穩定平衡行走的目的。

並列摘要


This thesis presents the stability of the balance control of the walking humanoid robot. Since focus of this study focuses on the balance of control of the walking robot by controlling the robot's lower body, six degrees of freedom with six motors, respectively are considered. When the robot is walking on different slopes, the proposed balance control mechanism will determine whether the center of gravity of the robot body is projected on the stable region of the predefined foot interval. In different slopes we can adjust the body center of gravity, so that the center of gravity can fall on the scope of the stable range. As humanoid robot walking, the center of gravity will shift as the slope changed, that will affect the stability of walking. In this thesis, we propose a detection system of the robot center of gravity for robot balance control, which combines ZMP approach and extenics relational function to maintain the stability of the walking robot on different slopes. We use the pressure sensors installed on the robot’s foot, to collect and analyze the values detected by the pressure sensors for converting into a center of gravity value. Furthermore, an extenics relational function has been constructed for keeping ZMP in the stable region to achieve the balance control of the walking robot.

並列關鍵字

Robot Extenics Embedded System ZMP

參考文獻


[2] Q. Li, A. Takanishi, and I. Kato, “A Biped Walking Robot Having A ZMP Measurement System Using Universal Force-Moment Sensor,” IEEE/RSJ International Workshop on Intelligent Robots and System IROS''91, Nov. 3-5, pp. 1568-1573, 1991.
[3] K. Erbatur, A. Okazaki, K. Obiya, and A. Kawamura, “A study on the Zero Moment Point Measurement for Biped Walking Robots,” 7th International Workshop on Advanced Motion Control, pp.431-436, 2002.
[4] D. Kim, S. J. Seo and G. T. Park, “Zero-moment point trajectory modelling of a biped walking robot using an adaptive neuro-fuzzy system,” IEEE Proceedings Control Theory Application, Vol. 152, No. 4, July 2005.
[6] J. H. Park, and Y. K. Rhee, “ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots,” Intelligent Robots and Systems, vol.1, pp. 90–95, Oct 1998.
[8] J. H Park, “Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motions of biped robots,” Fuzzy Sets and System Vol.134, pp.189-203, 2003.

延伸閱讀