透過您的圖書館登入
IP:3.135.197.201
  • 學位論文

燃料電池流道碳板製程參數變化對物理性質影響測試分析

Effect of manufacturing process variation on the physical properties of fuel cell carbon plate

指導教授 : 張敏興
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


質子交換膜燃料電池除了具潔淨無汙染等特性外,因其體積較小、可攜式極具市場潛力。其中關鍵零組件流道碳板約占燃料電池體積90%,係影響燃料電池功率密度與生產成本等重要因素。本研究主要探討流道碳板製程參數變化影響其物理性質表現,參照日本工業標準(Japanese Industrial Standard, JIS)量測其物理性質結果。製程參數主要包含碳材種類、樹脂濃度、熱壓固化成形壓力與熱壓固化成形溫度。測詴物理性質部分,包含機械性質(彎曲強度、彎曲模數)、導電性質(體積阻抗、穿透平面阻抗、接觸平面阻抗)、氣體滲透性質、密度、水接觸角等。製程條件以膨脹性石墨、樹脂濃度27%、熱壓固化成型壓力90kg/cm2、熱壓固化成型溫度150℃呈現較為優異的性能。本研究結果可用於流道碳板製程最佳化,節省不必要產品測詴開發時序,節省研發成本開支,進而提升流道碳板各項物理性質,進一步可大幅提高燃料電池功率密度等效能。

並列摘要


Proton exchange membrane fuel cell is not only clean, pollution-free but also small size, portable, great market potential. Among the components of a fuel cell, carbon plate is one of the key components and the volume about 90% of the fuel cell. The carbon plate is important factor of affects the fuel cell performance, power density and cost of production. In this proposal we will study how the variations in the manufacturing process affecting the physical properties of a carbon plate and according to Japanese Industrial Standard measurement methods to obtain the data of these properties. For the manufacturing processes, we will consider the content of resin in the carbon plate, the pressure in the pressurization process, and the temperature in heating solidification. For the physical properties, we will consider the mechanical properties, electric properties, gas permeability properties, density, and water contact angle. The process conditions for expanded graphite, resin concentration of 27%, the pressure in the pressurization process of 90kg/cm2, the temperature in heating solidification of 150℃ show excellent performance. The results of this study can be used for carbon plate process flow optimization, save unnecessary product test development timing, to save development costs, and thus enhance the physical properties of carbon plate, and further can significantly improve the performance of fuel cell power density.

參考文獻


〔3〕H.C.Kuan, C.C.M.Ma, K.H.Chen, S.M. Chen, “Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell”, J. Power Sources, 134 (2004) 7-17.
〔4〕I. Krupa, I. Nov’ak, I. Chod’ak, “Electrically and thermally conductive polyethylene/graphite composites and their mechanical properties”, Synthetic Metals, 145 (2004) 245-252.
〔5〕H.S. Lee, H.J. Kim, S.G. Kim, S.H. Ahn, “Evaluation of graphite composite bipolar plate for PEM (proton exchange membrane) fuel cell: Electrical, mechanical, and molding properties”, J. Materials Processing Technology 187-188 (2007) 425-428.
〔6〕Q. Yin, A.j. Li, W.Q. Wang, L.G. Xia, Y.M. Wang, “Study on the electrical and mechanical properties of phenol formaldehyde resin/graphite composite for bipolar plate”, J. Power Sources, 165 (2007) 717-721.
〔7〕S.R. Dhakate, R.B. Mathur, B.K. Kakati, T.L. Dhami, “Properties of graphite-composite bipolar plate prepared by compression molding technique for PEM fuel cell”, Int. J. of Hydrogen Energy, 32 (2007) 4537-4543.

延伸閱讀