透過您的圖書館登入
IP:3.149.255.145
  • 學位論文

以場效可程式化閘陣列實現用電設備之需量反應

FPGA-BASED IMPLEMENTATION OF DEMAND RESPONSE FOR ELECTRIC EQUIPMENT

指導教授 : 游文雄
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本篇論文是以場效可程式化閘陣列(field-programmable gate array, FPGA) 為核心之內嵌式系統, 搭配類比數位轉換器(A/D converter) ADC0809 建立主動感測控制器之感測技術來實現交流輸入電源之功率量測, 並搭配光耦合器(photo coupler) 和電晶體放大電路來控制負載輸入電源端的電磁接觸器(Magnetic Contactor) 的激磁線圈, 藉此來達成負載輸入電源的導通及斷開之控制。 數位控制實現是使用友晶科技研發之DE2-115開發板, 再選擇Verilog 邏輯程式來撰寫FPGA之關鍵性嵌入式邏輯軟體技術, 其FPGA晶片為Cyclone IV EP4CE115F29C7。控制演算法是在軟體環境Quartus II 中, 使用Verilog 硬體描述語言作程式設計。 在實作中, 我們將以一組單相交流電當輸入, 並以整流後之直流輸出於550W 之可變負載, 其中交流輸入電壓範圍為90~264V, 由實驗結果顯示: 在不同輸出負載情況下,其交流輸入電流絕對誤差約在0.2A 以內, 藉此證明主動感測控制器之程式演算法是可用的。

並列摘要


In this thesis, the embedded system of the field programmable gate array with a analog to digital converter (ADC0809) is used to establish an active sensing system to realize AC input power for power factor, current, and voltage paired with optical coupler and amplifier to control the load input power at the end of electro-magnetic contactor excitation coil so as to achieve load input power conduction and disconnection of the control. We use DE2-115 embedded system with the chip Cyclone IV EP4CE115F29C7 and write Verilog logic programming for FPGA key logic embedded software. Control algorithm in the software environment is Quartus II and Verilog hardware description language program design. From experimental results by using AC input ranging from 90V~264V and variable DC output loads within 550W, the AC input current absolute error is about 0.2A in different load cases, which shows that the effectiveness and availability of the proposed active sensing controller program algorithm.

參考文獻


[2] J. Acero, D. Navarro, L.A. Barragan, I. Garde, J.I. Artigas, and J.M. Burdio, “FPGA-Based Power Measuring for Induction Heating Appliances Using Sigma-Delta A/D Conversion,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1843-1852, August 2009.
[3] Z.Salcic, S.K. Nguang, and Y.Z Wu, “An Improved Taylor Method for Frequency Measurement in Power Systems,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 9, pp. 3288-3294 September 2009.
[5] K.E. Newman, “FPGA-Based System for Open, Short, and RC Impedance Measurement,” IEEE Transactions on Advanced Packaging, vol. 33, no. 1, pp. 147-152, February 2010.
[6] S.P. Valsan and K.S. Swarup, “High-Speed Fault Classification in Power Lines: Theory and FPGA-Based Implementation,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1793-1800, May 2009.
[7] E. Monmasson, L. Idkhajine, and M.W. Naouar, “FPGA-Based Controllers,” IEEE Industrial Electronics Magazine, pp. 14-26, March 2011.

延伸閱讀