透過您的圖書館登入
IP:18.220.147.154
  • 學位論文

試題擴增動態約簡演算法

Item Dynamic Incremental Reduction Algorithm of Item Response System

指導教授 : 劉湘川
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


任課教師常會在課堂上進行評量,有時試題過少或太多。試題過少時,無法測驗出學生的真實能力;試題過多時,則增加教師的閱卷時間。 模糊集合與粗糙集合理論特別適用於不同資料類型的分析,尤其在處理不正確、不確定或模糊的知識時。粗糙集合之屬性約簡理論有其嚴謹自足之數學結構,無上述缺失,可應用於小班級教學測驗之試題題庫約簡。劉湘川、簡茂發、許天維、何育賢(2009)發表之「基於粗糙集理論之試題作答反應系統的試題約簡演算法」提出屬性擴增動態約簡演算法,轉化應用於試題反應系統,即為「試題擴增動態約簡演算法」。 本研究將運用 MATLAB 撰寫程式,運用「試題擴增動態約簡演算法」,找出試題的約簡、建立判別矩陣及計算鑑別度,利用約簡的結果和鑑別度,進而定義所增加的試題。本研究的結論如下: 一、 設計「試題擴增動態約簡演算法」應用程式。 二、 判斷多餘試題。 三、 找出最簡試題組,協助教師進行補救教學施測。

並列摘要


Teachers usually give students tests during the instructions. Sometimes the examination questions are too few and sometimes too plenty. However, few questions can not evaluate the real abilities of students; at the same time, too many questions will increase the checking and correcting time. The theory of the rough class had it’s own structure and it was not complete without the theory above. Besides, it also applied to the test in the class of small size. Liu Xiang-chuan, Jian Mao-fa, Xu Tian-wei and He Yu-xian issued the Item Dynamic Incremental Reduction Algorithm of Item Response System Based on Rough Set Theory which was based on Item Reduction Algorithm of item response system of Rough Set Theory. This research used of MALTAB doing the copywriting of the advertisement. To find out the reduction of the test and to ascertain the discriminating matrix and the degree of the differentiation, the Item Dynamic Incremental Reduction Algorithm of Item Response System Based on Rough Set Theory. Use the simple result and the degree of differentiation to define the added test. Here comes the conclusion: 1. To design the formula of the Item Dynamic Incremental Reduction Algorithm Based on Rough Set Theory. 2. To determine unnecessary exam questions. 3. To find the most appropriate questions can help teachers proceeding the retrieval teaching.

並列關鍵字

item reduction

參考文獻


李明如(2002)。測驗選題演算法之研究-以國中基本學力測驗之國文、數學為例。桃園:私立中原大學資訊工程系碩士論文。
Law.C.K.(1997).Using fuzzy numbers in educational grading system.International Journal for Fuzzy Sets and System,10(3),102-133.
Pawlak, Z. (1991). Rough sets: theoretical aspects of reasoning about data. London.
Zadeh, L.A. (1965).Fuzzy Sets. Information control,8,338-353.
一、 中文部分

被引用紀錄


何育賢(2010)。基於粗糙集合理論增加屬性集之資訊系統約簡演算法〔碩士論文,亞洲大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0118-1511201215465398
周世忠(2011)。基於粗糙集合理論具決策試題之試題擴增動態約簡演算法〔碩士論文,亞洲大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0118-1511201215470382

延伸閱讀