透過您的圖書館登入
IP:3.147.65.65
  • 學位論文

透明導電薄膜:聚3,4-乙烯基二氧噻吩-聚苯乙烯磺酸/石墨烯之製備與性質研究

Preparation and Properties of PEDOT:PSS/Graphene Transparent Conductive Films

指導教授 : 邱文英
共同指導教授 : 謝國煌(Kuo-Huang Hsieh)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本實驗的目的為製備磺酸硫醇化之石墨烯/奈米銀複合材料,再將之混摻聚3,4-乙烯基二氧噻吩-聚苯乙烯磺酸( PEDOT:PSS )做為複合導電液,並利用旋轉塗佈的方式製成透明導電薄膜,觀察其不同配方下,複合導電液對表面電阻、導電度與穿透度的影響。 實驗主要分為兩個部分,第一部分利用Hummers Method合成石墨烯,再利用苯胺衍生物:對-氨基苯硫酚與對-氨基苯磺酸鈉進形石墨烯表面改質,使石墨烯表面接枝硫醇與磺酸鈉官能基,接著利用原位還原的方式讓石墨烯表面分散奈米銀粒子,並觀察其原位還原方式與吸附方式,石墨烯表面銀粒子分散形態之差別。實驗發現:以原位還原的方式分散奈米銀粒子,粒子分布較均勻且尺寸均一,故為較佳的方法。 第二部分將合成完之磺酸硫醇化石墨烯/奈米銀複合材料,混摻聚3,4-乙烯基二氧噻吩-聚苯乙烯磺酸做為複合導電液,並利用旋轉塗佈的方式製成透明導電薄膜,觀察其導電度與穿透度之變化,且與表面沒有分散奈米銀粒子之磺酸化石墨烯做比較。實驗結果發現:表面分散奈米銀粒子之磺酸硫醇化石墨烯,所做出的透明導電薄膜,表面電阻明顯下降且導電度較佳,因此推斷奈米銀粒子所扮演的導電間隙子角色,可以有效的傳遞石墨烯層與層之間的電子,故導電度較佳;此外在60nm厚度下之薄膜穿透度,可見光區皆超過85%,顯示為透明度良好的導電薄膜。 因此,磺酸硫醇化石墨烯/奈米銀複合材料混摻聚3,4-乙烯基二氧噻吩-聚苯乙烯磺酸做成之透明導電薄膜,導電度明顯高於沒有分散奈米銀粒子之磺酸化石墨烯/聚3,4-乙烯基二氧噻吩-聚苯乙烯磺酸薄膜,且薄膜具有良好的光學穿透度。

並列摘要


The aim of this study was to synthesize the sulfonated sulfhydrylated graphene/silver nanoparticles complex conductive dispersion blended with Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) (Graphene-Ag/PEDOT:PSS). In this study, the conductive film was fabricated by spin coating the Graphene-Ag/PEDOT:PSS complex dispersion on glass substrate. The optoelectronic properties of the conductive film such as transparency, conductivity, and durability were investigated to compare the relationship between the graphene content and PEDOT:PSS. This study included two parts. In first part, by using Hummers method, graphene was synthesized from graphite via oxidation reaction and thermal annealing. Then, by using 4-aminothiophenol and sulfanilic acid sodium salt hydrate as the precursor, sulfonated sulfhydrylated graphene was synthesized from graphene via diazonium functionalization. Furthermore, by using silver nitrate as the precursor, sulfonated sulfhydrylated graphene decorated with silver nanoparticles was via in situ reduction. In second part, the Graphene-Ag/PEDOT:PSS complex conductive dispersion was synthesized by blending graphene/silver nanoparticles complex dispersion and PEDOT:PSS. Then, the conductive film was fabricated by spin coating the Graphene-Ag/PEDOT:PSS complex dispersion on glass substrate. Furthermore, the transparency, conductivity, particle size and morphology were characterized by UV-Vis spectrophotometer, Volt-Ohm-Milliammete, Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM), respectively. III It showed that the Graphene-Ag/PEDOT:PSS complex conductive film owned superior surface resistance (87.5 Ω/sq) and transparency (transmittance > 85% at 60 nm film thickness). Furthermore, the conductivity of the Graphene-Ag/PEDOT:PSS thin film was obviously better than the Graphene/PEDOT:PSS film due to the introduction of silver nano spacer.

參考文獻


1. H. P. Boehm, A. Clauss, G. O. Fischer, U. Hofmann, Z. Naturf. 1962. 17: p. 150
2. F. A. Lindemann, Z. Phys. 1910. 11: p. 609
3. Novoselov, K. S. Geim, A. K. Morozov, S. V. Morozov et al., Electric field effect in atomically thin carbon films. Science, 2004. 306: p. 666-669
4. Lee, C. et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321 (5887): p. 385–388
5. Alexander A. Balandin et al., Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett., 2008. 8 (3): p. 902–907

延伸閱讀