透過您的圖書館登入
IP:3.140.198.173
  • 學位論文

醫院手術室內之超細懸浮微粒:軌跡模擬與現地量測

Airborne Ultrafine Particles in Hospital Operating Rooms: Trajectory Simulations and In-situ Monitoring

指導教授 : 蕭大智

摘要


對於醫療環境中的醫護人員及病人,生物氣膠與手術煙霧都可能造成呼吸暴露風險或是感染。其傳輸過程及傳播與氣膠動力學密切相關,並會受污染物特性或通風系統影響。本研究監測六個不同手術室中手術煙霧的微粒粒徑分佈、質量濃度和化學成分。藉由現場量測污染物濃度估算不同手術過程中超細懸浮微粒數目的排放因子,並同時監測各項室內空氣品質污染物,分析污染物的動態演變。手術煙霧微粒分布的幾何平均粒徑約在70 nm左右,其排放強度會依手術類型而有所差異,介於1010 ~1011 particles/min之間。室內空氣污染物的變化主要受到通風系統換氣率的影響,故本研究透過計算流體力學模擬 (CFD,COMSOL Multiphysics) 研究不同粒徑微粒(10 nm ~ 10 μm) 的運動行為及其停留時間。但以計算流體力學數值模擬微粒軌跡需要大量的電腦運算成本,故本研究另以CFD結合馬可夫鏈模型的方式模擬手術室中超細懸浮微粒的行為,結果顯示以CFD結合馬可夫鏈模型可以大幅降低電腦運算成本並維持一定的模擬精確度。本研究所建立之方法及結果可用於改善醫院手術室的室內空氣品質,及預測室內空氣污染物的傳輸。

並列摘要


Surgical smoke and bioaerosols in hospitals could be a concern for both patients and medical personnel. Disease transmission is closely related to aerosol mechanics, which is affected by ventilation and pollutants characteristics. This study monitored particle size distributions, number, and mass concentrations of surgical smoke in six different operating rooms. The concentration and emission strength of pollutants are characterized through on-site measurements. The geometric mean of particle size is around 70 nm, and the emission factor is about 1010~1011 particles/min depending on the type of surgery. In addition, the temporal variation of pollutants in different surgical processes is characterized. In order to study the influences of the air exchange rate, the dynamic behaviors of particles of various sizes are studied by Computational Fluid Dynamics (CFD) simulation (COMSOL Multiphysics). Although CFD-particles trajectory can describe the detail of particles movement, it requires a high computational cost. Therefore, CFD combined with Markov chain model, which can improve the computational efficiency with reasonable accuracy, is employed to estimate the particle residence time and corresponding air exchange rate. The results provide insights for improving indoor air quality in hospital operating rooms and predicting aerosol transmission.

參考文獻


Blocken, B., Stathopoulos, T., Carmeliet, J., Hensen, J. L. (2011). Application of computational fluid dynamics in building performance simulation for the outdoor environment: an overview. Journal of Building Performance Simulation, 4(2), 157-184. doi:10.1080/19401493.2010.513740
Buonanno, G., Capuano, R., Cortellessa, G., Stabile, L. (2019). Airborne particle emission rates and doses received in operating rooms from surgical smoke. Building and Environment, 151, 168-174. doi:10.1016/j.buildenv.2019.01.044
Cao, Y. C., Deng, Q. X., Dai, S. X. (2020). Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel medicine and infectious disease, 35, 101647. doi:10.1016/j.tmaid.2020.101647
Chen, C., Lin, C. H., Long, Z., Chen, Q. (2014). Predicting transient particle transport in enclosed environments with the combined computational fluid dynamics and M arkov chain method. Indoor Air, 24(1), 81-92. doi:10.1111/ina.12056
Chen, C., Liu, W., Lin, C.-H., Chen, Q. (2015). A Markov chain model for predicting transient particle transport in enclosed environments. Building and Environment, 90, 30-36. doi:10.1016/j.buildenv.2015.03.024

延伸閱讀