簡易檢索 / 詳目顯示

研究生: 林子婷
Lin, Tzu-Ting
論文名稱: 擴增實境工具輔助國中生學習三視圖
Designing an Augmented Reality Application to Assist Middle-school Student Learning Three-Dimensional Views
指導教授: 吳正己
Wu, Cheng-Chih
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 99
中文關鍵詞: 擴增實境空間幾何三視圖
英文關鍵詞: Augmented reality, Spatial geometry, Three-dimensional views
DOI URL: http://doi.org/10.6345/NTNU202000693
論文種類: 學術論文
相關次數: 點閱:97下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空間能力是學生的重要的基本能力之一,透過空間幾何的學習是培養空間能力的有效途徑。然而,由於缺乏有效的學習工具,學生的學習成效並不佳。本研究發展一套輔助學生學習三視圖概念之擴增實境工具,幫助學生想像視圖及建構立體圖形,以幫助學生培養空間能力;並進一步評估該擴增實境工具對學生學習成效與態度的影響。本研究採準實驗設計來評估此工具的效益,實驗對象為北部某國中兩班七年級生55人,皆為常態編班。一班28人為實驗組,使用擴增實境工具與實體積木;另一班27人為控制組,使用實體積木。兩組學生除了使用的學習工具不同之外,在學習內容、授課教師及教學流程均相同,於學習活動結束後,收集學生的成就測驗、態度問卷及個人訪談等量化與質性資料,據以分析整理實驗結果。
    研究結果發現:(1)實驗組與控制組學生之學習成就並未達到顯著差異;(2)兩組學生在工具有用性及易用性整體滿意度皆高,而工具易用性部分控制組顯著優於實驗組;(3)兩組學生在學習滿意度方面並無顯著差異。推測學習成就未顯著的原因可能為本研究工具適用於更複雜的立體圖形之學習,此外,系統穩定度不足或學生不熟悉平板操作亦可能影響使用之成效;而兩組學生學習動機未達顯著的原因可能為學習活動時長不足所致。未來研究建議需進一步改善擴增實境工具,將掃描積木圖卡的功能改用更有效的辨識方式,以提升系統易用性並減少學生的認知負荷。

    Spatial ability is one of the essential skills for every individual. Previous research has indicated that learning spatial geometry is an effective way to cultivate students' spatial ability. However, students usually did not learn the skill well due to lack of effective instructional tools. Augmented reality (AR) with the ability to integrate virtual information onto real-world, is considered an effective tool to help students develop their spatial abilities. In this study, we developed an AR tool to assist students in learning three-dimensional-views concepts in spatial geometry. This AR application aimed to help students imagine the three-dimensional-views of an object and vice versa, mentally constructed the object from its three-dimensional-views. A quasi-experimental research design was conducted in a middle school to evaluate the effectiveness of the tool. Twenty-eight seventh-grade students were assigned to the experimental group, using the AR application with wooden blocks for building objects, while 27 seventh-grade students served as the control group used wooden blocks only. Data from the final achievement test, attitude questionnaire, and group interviews were collected for further analysis.
    Our findings showed that there were no significant differences between the two groups in students’ learning achievements and motivations. In addition, both groups of students had positive attitudes on the usefulness and ease of use of their learning tools, however, the control group showed more ease of use than the experimental group. We suggested further research should revise the AR application to improve its usability in scanning objects and reduce students' cognitive load while using the tool in learning.

    摘要 II Abstract III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 第一節 研究動機與背景 1 第二節 研究目的與待答問題 3 第三節 名詞釋義 4 第二章 文獻探討 5 第一節 空間能力 5 第二節 三視圖學習 7 第三節 擴增實境與三視圖學習 10 第三章 擴增實境工具設計 18 第一節 擴增實境工具系統功能規劃 18 第二節 擴增實境工具系統實作 23 第四章 教學實驗 33 第一節 教學實驗設計 33 第二節 教學實驗參與者 33 第三節 實驗工具 34 第四節 三視圖學習活動 44 第五節 實驗流程 45 第五章 結果與討論 49 第一節 學習成就結果 49 第二節 學習態度結果 51 第六章 結論與建議 56 第一節 結論 56 第二節 建議 58 參考資料 59 附錄一 實驗組活動學習單 65 附錄二 控制組活動學習單 79 附錄三 三視圖學習成就測驗 93 附錄四 實驗組學習工具態度問卷 97 附錄五 控制組學習工具態度問卷 98 附錄六 學習動機問卷 99

    王毓婕、陳光勳(2016)。運用幾何軟體Cabri 3D與實體積木教具教學對國小二年級學童學習空間旋轉概念之影響。臺灣數學教育期刊,3(1),19-54。
    左台益、梁勇能(2001)。國二學生空間能力與van Hiele幾何思考層次相關性研究。師大學報:科學教育類,46(1&2),1-20。
    吳明郁(2004)。國小四年級學童空間能力學習的研究:以立體幾何展開圖為例。國立臺北教育大學數理教育研究所學位論文,未出版,臺北市。
    吳致平(2014)。以擴增實境輔助立體三視圖之學習。國立臺灣師範大學碩士論文,未出版,臺北市。
    吳書寯(2017)。應用擴增實境工具輔助國中學生學習空間幾何。國立臺灣師範大學碩士論文,未出版,臺北市。
    林為光(2011)。不同虛擬實境多媒體設計輔助對國小學童體積概念學習效益之研究。國立臺中教育大學碩士論文,未出版,臺中市。
    張碧芝、吳昭容(2009)。影響六年級學生立方體計數表現的因素-空間定位與視覺化的角色。教育心理學報,41(1),125-145。
    教育部(2016)。十二年國民基本教育數學領域課程綱要。臺北:教育部。
    教育部(2003)。國民中小學九年一貫數學學習領域課程綱要。台北市:教育部。
    曹宗萍、周文忠(1998)。國小數學態度量表編製之研究。台北市立師範學院。
    陳韻如(2017)。探究臺灣五至八年級學生積木方塊三視圖的表現:問卷調查與教學實驗(Doctoral dissertation)。
    曾淑慧(2006)。多媒體輔助教學對小五學童空間能力學習之研究—以立體三視圖為例。
    Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1-11.
    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
    Baki, A., Kosa, T., & Guven, B. (2011). A comparative study of the effects of using dynamic geometry software and physical manipulatives on the spatial visualisation skills of pre‐service mathematics teachers. British Journal of Educational Technology, 42(2), 291-310.
    Battista, M. T. & Clements, D. H. (1996). Students' understanding of three-dimensional rectangular arrays of cubes. Journal for Research in Mathematics Education, 258-292.
    Ben-Chaim, D., Lappan, G., & Houang, R. T. (1989). Adolescents' ability to communicate spatial information: Analyzing and effecting students' performance. Educational Studies in Mathematics, 20(2), 121-146.
    Bimber, O., & Raskar, R. (2005). Spatial augmented reality: merging real and virtual worlds. AK Peters/CRC Press.
    Bishop, A. J. (1980). Spatial abilities and mathematics education—A review. Educational studies in mathematics, 11(3), 257-269.
    Bodner, G. M., & Guay, R. B. (1997). The Purdue visualization of rotations test. The Chemical Educator, 2(4), 1-17.
    Carbonell Carrera, C., & Bermejo Asensio, L. A. (2017). Augmented reality as a digital teaching environment to develop spatial thinking. Cartography and geographic information science, 44(3), 259-270.
    Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge University Press.
    Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children's mathematics ability. Journal of Cognition and Development, 15(1), 2-11.
    Clements, D. H. (2003). Teaching and learning geometry. A research companion to principles and standards for school mathematics, 151-178.
    Cohen, C. A., & Hegarty, M. (2014). Visualizing cross sections: Training spatial thinking using interactive animations and virtual objects. Learning and Individual Differences, 33, 63-71.
    Cooper, M., & Sweller, J. (1989). Secondary school students' representations of solids. Journal for Research in Mathematics Education, 202-212.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
    Ekstrom, R. B., French, J. W., & Harman, H. H. (1979). Cognitive factors: Their identification and replication. Multivariate Behavioral Research Monographs.
    Ertekin,E.(2014),Is Cabri 3D effective for the teaching of special planes in analytic
    Estapa, A., & Nadolny, L. (2015). The effect of an augmented reality enhanced mathematics lesson on student achievement and motivation. Journal of STEM Education: Innovations and Research, 16(3), 40.
    Gardner, H. (1983). Frames of Mind: The Theory of Multiple Intelligences: JSTOR.
    Gutiérrez, A. (1996). Children’s ability for using different plane representations of space figures. New directions in geometry education, 33-42.
    Hwang, G. J., Wu, P. H., Chen, C. C., & Tu, N. T. (2016). Effects of an augmented reality-based educational game on students' learning achievements and attitudes in real-world observations. Interactive Learning Environments, 24(8), 1895-1906.
    Interactive Learning Environments, 23:6, 799-810.
    Jones, K., Fujita, T., & Kunimune, S. (2012). Representations and reasoning in 3-D geometry in lower secondary school. Proceedings of PME-36, 2, 339-346.
    learning solid geometry by using an augmented reality-assisted learning system.
    Lin, H. C. K., Chen, M. C., & Chang, C. K. (2015). Assessing the effectiveness of learning solid geometry by using an augmented reality-assisted learning system. Interactive Learning Environments, 23(6), 799-810.
    Lord, T. R. (1985). Enhancing the visuo‐spatial aptitude of students. Journal of research in science teaching, 22(5), 395-405.
    Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge.
    Martín-Gutiérrez, J., Saorín, J. L., Contero, M., Alcañiz, M., Pérez-López, D. C., & Ortega, M. (2010). Design and validation of an augmented book for spatial abilities development in engineering students. Computers & Graphics, 34(1), 77-91.
    McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological bulletin, 86(5), 889.
    McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological bulletin, 86(5), 889.
    Melo, H. S., & do Carmo Martins, M. (2015). Behaviors and attitudes in the teaching and learning of geometry. European Scientific Journal, ESJ, 11(10).
    Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
    Olkun, S. (2003). Making connections: Improving spatial abilities with engineering drawing activities. International Journal of Mathematics Teaching and Learning, 3(1), 1-10.
    Purnama, J., Andrew, D., & Galinium, M. (2014, August). Geometry learning tool for elementary school using augmented reality. In Industrial Automation, Information and Communications Technology (IAICT), 2014 International Conference on (pp. 145-148). IEEE.
    Ragni, M., & Knauff, M. (2013). A theory and a computational model of spatial reasoning with preferred mental models. Psychological review, 120(3), 561.
    Reio, T., Czarnolewski, M., & Eliot, J. (2004). Handedness and spatial ability: Differential patterns of relationships. Laterality: Asymmetries of Body, Brain and Cognition, 9(3), 339-358.
    Sack, J. J. (2013). Development of a top-view numeric coding teaching-learning trajectory within an elementary grades 3-D visualization design research project. The Journal of Mathematical Behavior, 32(2), 183-196.
    Sayed, N. E., Zayed, H. H., & Sharawy, M. I. (2011). ARSC: Augmented reality student card an augmented reality solution for the education field. Computers & Education, 56(4), 1045-1061.
    Shepard, R. N., & Feng, C. (1972). A chronometric study of mental paper folding. Cognitive psychology, 3(2), 228-243.
    Sinclair, N., & Bruce, C. D. (2015). New opportunities in geometry education at the primary school. ZDM, 47(3), 319-329.
    Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
    Tatli, Z., & Ayas, A. (2010). Virtual laboratory applications in chemistry education. Procedia-Social and Behavioral Sciences, 9, 938-942.
    Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why, and how?. In Psychology of learning and motivation (Vol. 57, pp. 147-181). Academic Press.
    Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: a meta-analysis of training studies. Psychological bulletin, 139(2), 352.
    Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817.

    下載圖示
    QR CODE