簡易檢索 / 詳目顯示

研究生: 郭柏宏
Kuo, Bo-Hong
論文名稱: 設計合成選擇性標定含胍基化合物的化學探針分子
Design and Synthesis of Chemical Probes for Selective Labelling of Guanidine-Bearing Molecules
指導教授: 謝俊結
Shie, Jiun-Jie
杜玲嫻
Tu, Ling-Hsien
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 141
中文關鍵詞: 精胺酸1,2-雙酮二苯乙醇酸重排反應生物偶聯反應
英文關鍵詞: guanidine, arginine, 1,2-diketone, benzilic rearrangement, bioconjugation
DOI URL: http://doi.org/10.6345/NTNU202000986
論文種類: 學術論文
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 縮寫表 IX 第一章 緒論 1 1.1 前言 1 1.2 點擊化學(click chemistry)與其應用 2 1.2.1 施陶丁格連接反應(Staudinger ligation) 3 1.2.2 銅催化疊氮-炔烴環加成反應(Copper(I)-Catalyzed Azide-Alkyne Cycloaddition, CuAAC) 4 1.2.3 張力促進的疊氮-炔烴環加成反應(Strain-Promoted Azide-Alkyne Cycloaddition, SPAAC) 5 1.2.4 烯烴與四嗪的環加成反應(Cycloaddition Addition of Tetrazines and Olefins) 5 1.3 胺基酸的偶聯反應 7 1.3.1 半胱胺酸(cysteine)的偶聯反應 8 1.3.2 離胺酸(lysine)的偶聯反應 9 1.3.3 酪胺酸(tyrosine)的偶聯反應 10 1.4 胍(guanidine)及其衍生物的介紹 11 1.5 胍官能團(guanidine group)的偶聯反應 12 1.6 1,2-雙酮(1,2-diketone)衍生物及應用 17 1.7 研究動機 19 第二章 實驗結果與討論 20 2.1 溶劑的篩選 20 2.2 起始物及溫度的篩選 21 2.3 鹼試劑的篩選 24 2.4 八環1,2-雙酮衍生物的合成 26 2.4.1 化合物7的合成 26 2.4.2 化合物13的合成 26 2.4.3 化合物19的合成 28 2.4.4 化合物24及27的合成 29 2.4.5 化合物30的合成 31 2.5 取代基效應的探討 33 2.6 反應機構的探討 35 2.7 胍官能團的選擇性標定 37 2.8 結論 39 第三章 實驗部分 40 3.1 實驗儀器 40 3.1.1 核磁共振光譜儀(nuclear magnetic resonance spectroscopy, NMR) 40 3.1.2 高解析質譜儀 40 3.1.3 傅立葉轉換紅外光譜儀(Fourier transform infrared red spectrometer, FT-IR) 41 3.2 實驗藥品 41 3.2.1 實驗藥品試劑 41 3.2.2 薄層色層分析(thin layer chromatography, TLC) 41 3.2.3 管柱色層分析(column chromatography) 41 3.3 合成步驟與光譜資料 42 參考文獻 70 附錄 77

    [1] Shieh, P.; Bertozzi, C. R. Org. Biomol. Chem. 2014, 12, 9307–9320. Design strategies for bioorthogonal smart probes.
    [2] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. Click chemistry: Diverse chemical function from a few good reactions.
    [3] Shih, H. W.; Kamber, D. N.; Prescher, J. A. Curr. Opin. Chem. Biol. 2014, 21, 103–111. Building better bioorthogonal reactions.
    [4] Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635–646. Über neue organische phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine.
    [5] Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007–2010. Cell surface engineering by a modified Staudinger reaction.
    [6] Wei, F.; Wang, W.; Ma, Y.; Tung, C. H.; Xu, Z. Chem. Commun. 2016, 52, 14188–14199. Regioselective synthesis of multisubstituted 1,2,3-triazoles: Moving beyond the copper-catalyzed azide-alkyne cycloaddition.
    [7] Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 2004, 126, 15046–15047. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems.
    [8] Blackman, M. L.; Royzen, M.; Fox, J. M. J. Am. Chem. Soc. 2008, 130, 13518–13519. Tetrazine ligation: Fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity.
    [9] Devaraj, N. K.; Weissleder, R.; Hilderbrand, S. A. Bioconjugate Chem. 2008, 19, 2297–2299. Tetrazine-based cycloadditions: Application to pretargeted live cell imaging.
    [10] Knall, A. C.; Slugovc, C. Chem. Soc. Rev. 2013, 42, 5131–5142. Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: A (high) potential click chemistry scheme.
    [11] Stephanopoulos, N.; Francis, M. B. Nat. Chem. Biol. 2011, 7, 876–884. Choosing an effective protein bioconjugation strategy.
    [12] Shiu, H. Y.; Chan, T. C.; Ho, C. M.; Liu, Y.; Wong, M. K.; Che, C. M. Chem. Eur. J. 2009, 15, 3839–3850. Electron-deficient alkynes as cleavable reagents for the modification of cysteine-containlng peptides in aqueous medium.
    [13] Koniev, O.; Leriche, G.; Nothisen, M.; Remy, J. S.; Strub, J. M.; Schaeffer-Reiss, C.; VanDorsselaer, A.; Baati, R.; Wagner, A. Bioconjugate Chem. 2014, 25, 202−206. Selective irreversible chemical tagging of cysteine with 3-arylpropiolonitriles.
    [14] Dovgan, I.; Ursuegui, S.; Erb, S.; Michel, C.; Kolodych, S.; Cianférani, S.; Wagner, A. Bioconjugate Chem. 2017, 28, 1452−1457. Acyl fluorides: Fast, efficient, and versatile lysine-based protein conjugation via plug-and-play strategy.
    [15] Ban, H.; Nagano, M.; Gavrilyuk, J.; Hakamata, W.; Inokuma, T.; Barbas, C. F. Bioconjugate Chem. 2013, 24, 520−532. Facile and stabile linkages through tyrosine: Bioconjugation strategies with the tyrosine-click reaction
    [16] Dirksen, A.; Hackeng, T. M.; Dawson, P. E. Angew. Chem. Int. Ed. 2006, 45, 7581–7584. Nucleophilic catalysis of oxime ligation.
    [17] Berlinck, R. G. S. Nat. Prod. Rep. 1996, 13, 377–409. Natural guanidine derivatives.
    [18] Berlinck, R. G. S.; Romminger, S. Nat. Prod. Rep. 2016, 33, 456–490. The chemistry and biology of guanidine natural products.
    [19] Berlinck, R. G. S.; Bertonha, A. F.; Takaki, M.; Rodriguez, J. P. G. Nat. Prod. Rep. 2017, 34, 1264–1301. The chemistry and biology of guanidine natural products.
    [20] Grundler, V.; Gademann, K. ACS Med. Chem. Lett. 2014, 5, 1290−1295. Direct arginine modification in native peptides and application to chemical probe development.
    [21] Nishimura, T.; Kitajima, K. J. Org. Chem. 1979, 44, 818–824. Reaction of Guanidines with α-Diketones. Syntheses of 4, 5-disubstituted-2-aminoimidazoles and 2, 6-unsymmetrically substituted imidazo[4, 5-d]imidazoles.
    [22] Tanabe, S.; Sakaguchi, T. Chem. Pharm. Bull. 1978, 26, 337–342. Reaction of guanidines with α-diketones. V. Mechanism of the fluorescence reaction of monosubstituted guanidines with 9, 10-phenanthraquinone.
    [23] Sibbersen, C.; Palmfeldt, J.; Hansen, J.; Gregersen, N.; Jørgensen, K. A.; Johannsen, M. Chem. Commun. 2013, 49, 4012–4014. Development of a chemical probe for identifying protein targets of α-oxoaldehydes.
    [24] Thompson, D. A.; Ng, R.; Dawson, P. E. J. Pept. Sci. 2016, 22, 311–319. Arginine selective reagents for ligation to peptides and proteins.
    [25] Wanigasekara, M. S. K.; Chowdhury, S. M. Analytica Chimica Acta, 2016, 935, 197–206. Evaluation of chemical labeling methods for identifying functional arginine residues of proteins by mass spectrometry.
    [26] Wanigasekara, M. S. K.; Huang, X.; Chakrabarty, J. K.; Bugarin, A.; Chowdhury, S. M. ACS Omega 2018, 3, 14229−14235. Arginine-selective chemical labeling approach for identification and enrichment of reactive arginine residues in proteins.
    [27] Quagliato, D. A.; Andrae, P. M.; Fan, Y. (2007), US Appl. Patent, US20070203116A1.
    [28] Selman, S.; Eastham, J. F. Quart. Rev., Chem. Soc. 1960, 14, 221–235. Benzilic acid and related rearrangements.
    [29] Hoyos, P.; Sinisterra, J. V.; Molinari, F.; Alcántara, A. R.; DeMaría, P. D. Acc. Chem. Res. 2010, 43, 288–299. Biocatalytic strategies for the asymmetric synthesis of α-hydroxy ketones.
    [30] Katritzky, A. R.; Borja, S. B.; Marquet, J.; Sammes, M. P. J. Chem. Soc., Perkin Trans. 1 1983, 2065–2069. Quaternary salts of 2H-imidazoles.
    [31] Gundeti, M.; Sisodia, B.; Marlewar, S.; Reddy, R. J. Braz. Chem. Soc. 2012, 23, 171–179. Metal chloride hydrates as Lewis acid catalysts in multicomponent synthesis of 2,4,5-triarylimidazoles or 2,4,5-triaryloxazoles
    [32] Raju, G. N.; Sai, K. B.; Myneni, R. T.; Navya, N.; Yasaswini, R. S.; Nadendla, R. R. World J. Pharm. Res. 2015, 5, 2625–2633. Synthesis, characterization and antimicrobial evaluation of novel 2,3-diphenyl quinoxaline-1,4-di-n-oxide derivatives.
    [33] Ren, W.; Xia, Y.; Ji, S. J.; Zhang, Y.; Wan, X.; Zhao, J. Org. Lett. 2009, 11, 1841–1844. Wacker-type oxidation of alkynes into 1,2-diketones using molecular oxygen.
    [34] Che, C. M.; Yu, W. Y.; Chan, P. M.; Cheng, W. C.; Peng, S. M.; Lau, K. C.; Li, W. K. J. Am. Chem. Soc. 2000, 122, 11380–11392. Alkyne oxidations by cis-dioxoruthenium(VI) complexes. A formal [3 + 2] cycloaddition reaction of alkynes with cis-[(Cn*)(CF3CO2)Ru(VI)O2]ClO4 (Cn*=1,4,7-trimethyl-1,4,7-triazacyclononane).
    [35] Charpe, V. P.; Sagadevan, A.; Hwang, K. C. Green Chem. 2020, advance article. Visible light-induced aerobic oxidation of diarylalkynes to α-diketones catalyzed by copper-superoxo at room temperature. [DOI: 10.1039/d0gc00975j]
    [36] Nobuta, T.; Tada, N.; Hattori, K.; Hirashima, S. I.; Miura, T.; Itoh, A. Tetrahedron Lett. 2011, 52, 875–877. Facile aerobic photo-oxidative synthesis of α-diketones from alkynes.
    [37] Ozanne, A.; Pouységu, L.; Depernet, D.; François, B.; Quideau, S. Org. Lett. 2003, 5, 2903–2906. A stabilized formulation of IBX (SIBX) for safe oxidation reactions including a new oxidative demethylation of phenolic methyl aryl ethers.
    [38] Sangi, Diego P.; Cominetti, Márcia R.; Becceneri, Amanda B.; Resende, Flavia A.; Varanda, Eliana A.; Montanari, Carlos A.; Paixão, Marcio W.; Corrêa, Arlene G. J. Med. Chem. 2015, 11, 736–746. Molecular design, synthesis and evaluation of 2,3-diarylquinoxalines as estrogen receptor ligands.
    [39] Qi, C.; Jiang, H.; Huang, L.; Chen, Z.; Chen, H. Synthesis 2011, 3, 387–396. DABCO-catalyzed oxidation of deoxybenzoins to benzils with air and one-pot synthesis of quinoxalines.
    [40] Yates, P.; Lewars E. G.; McCabe, P. H. Can. J. Chem. 1970, 48, 788–795. Cyclooctatetraenoquinones. I. The synthesis and structure of dibenzo[a,e]cyclooctene-5,6-dione.
    [41] Mbua, N. E.; Guo, J.; Wolfert, M. A.; Steet, R.; Boons, G. J. ChemBioChem 2011, 12, 1912–1921. Strain-promoted alkyne-azide cycloadditions (SPAAC) reveal new features of glycoconjugate biosynthesis.
    [42] Schmidt, S.; Dörr, T. B.; Drochner, A.; Vogel, H. Chem. Eng. Technol. 2016, 39, 1519–1526. Modified Mo/V/W-mixed oxides for catalytic tar removal from biosyngas via oxidation.
    [43] Barton, D. H. R.; Elliott, J. D.; Géro, S. D. J. Chem. Soc., Perkin Trans. 1 1982, 2085–2090. Synthesis and properties of a series of sterically hindered guanidine bases.
    [44] Goldberg, R. N.; Kishore, N.; Lennen, R. M. J. Phys. Chem. Ref. Data 2002, 31, 231–370. Thermodynamic quantities for the ionization reactions of buffers in water.
    [45] Saito, S.; Ozaki, H.; Itano, H. E. A. Chem. Pharm. Bull. 1982, 30, 3890–3896. N-Substituted phenanthroimidazolamines from the reaction of phenanthrenequinone with monosubstituted guanidines.
    [46] Warren, S. A. (2012) The synthesis of hydroxy-iso-evoninic acid via a benzilic ester rearrangement. Unpublished doctoral dissertation, Department of Chemistry, Imperial College London, London, UK.
    [47] Jung, M. E.; Miller, S. J. J. Am. Chem. Soc. 1981, 103, 1984–1992. Total synthesis of isopavine and intermediates for the preparation of substituted amitriptyline analogues: Facile routes to substituted dibenzocyclooctatrienes and dibenzocycloheptatrienes.
    [48] Hioki, Y.; Itoh, M.; Mori, A.; Okano, K. Synlett. 2020, 31, 189–193. One-pot deprotonative synthesis of biarylazacyclooctynones.
    [49] Cruchter, T.; Harms, K.; Meggers, E. Chem. Eur. J. 2013, 19, 16682–16689. Strain-promoted azide-alkyne cycloaddition with ruthenium(II)-azido complexes.
    [50] Trosien, S.; Waldvogel, S. R. Org. Lett. 2012, 14, 2976–2979. Synthesis of highly functionalized 9,10-phenanthrenequinones by oxidative coupling using MoCl5.
    [51] Kornmayer, S. C.; Rominger, F.; Gleiter, R. Synthesis 2009, 15, 2547–2552. Synthesis of 11,12-didehydrodibenzo[a,e]cycloocten-5(6H)-one: A strained eight-membered alkyne.
    [52] Colombo, M.; Sommaruga, S.; Mazzucchelli, S.; Polito, L.; Verderio, P.; Galeffi, P.; Corsi, F.; Tortora, P.; Prosperi, D. Angew. Chem. Int. Ed. 2012, 51, 496–499. Site-specific conjugation of ScFvs antibodies to nanoparticles by bioorthogonal strain-promoted alkyne-nitrone cycloaddition.
    [53] Zheng, J.; Liu, K.; Reneker, D. H.; Becker, M. L. J. Am. Chem. Soc. 2012, 134, 17274–17277. Post-assembly derivatization of electrospun nanofibers via strain-promoted azide alkyne cycloaddition.
    [54] Bicker, K. L.; Thompson, P. R. Biopolymers. 2013, 99, 155–163. The protein arginine deiminases: Structure, function, inhibition, and disease.
    [55] Bicker, K. L.; Subramanian, V.; Chumanevich, A. A.; Hofseth, L. J.; Thompson, P. R. J. Am. Chem. Soc. 2012, 134, 17015−17018. Seeing citrulline: development of a phenylglyoxal-based probe to visualize protein citrullination.
    [56] Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512–7515. NMR chemical shifts of common laboratory solvents as trace impurities.
    [57] Elliott, I. W.; Sloan, M. J.; Tate, E. Tetrahedron 1996, 52, 8063–8072. Synthetic entry to dibenzo[b,f]oxinin and dibenzo[b,f]azonine derivatives through a dibenzo[a,e]cycloocten-5-one.
    [58] Gore, S.; Baskaran, S.; König, B. Org. Lett. 2012, 14, 4568–4571. Fischer indole synthesis in low melting mixtures.
    [59] Jia, M.; Monari, M.; Yang, Q. Q.; Bandini, M. Chem. Commun. 2015, 51, 2320–2323. Enantioselective gold catalyzed dearomative [2+2]-cycloaddition between indoles and allenamides.
    [60] Kollenz, G.; Theuer, R.; Ott, W.; Peters, K.; Peters, E. M.; Schnering, H. G. Heterocycles, 1988, 27, 479–494. Reactions with cyclic oxalyl compounds, part 26: the Fischer-indole rearrangement of sterically hindered systems, part 7: diaza[n.3.3]propellanes via thermally initiated Fischer-indolization.
    [61] Letcher, R. M.; Kwok, N. C.; Lo, W. H.; Ng, K. W. J. Chem. Soc., Perkin Trans. 1, 1998, 10, 1715–1719. Novel heterocycles from 5-methyldibenz[b,f]azocin-6,12-dione and its derivatives.
    [62] Hosoya, T.; Kii, I.; Yoshida, S.; Matsushita, T. (2013), US Appl. Patent, US2013011901 (A1).

    無法下載圖示 電子全文延後公開
    2025/08/01
    QR CODE